我一直在使用 Matlab 执行无约束最小二乘法(普通最小二乘法),它会自动输出系数、检验统计量和 p 值。
我的问题是,在执行约束最小二乘法(严格非负系数)时,它只输出系数,没有测试统计量,p 值。
是否可以计算这些值以确保显着性?为什么它不能直接在软件上使用(或任何其他软件?)
我一直在使用 Matlab 执行无约束最小二乘法(普通最小二乘法),它会自动输出系数、检验统计量和 p 值。
我的问题是,在执行约束最小二乘法(严格非负系数)时,它只输出系数,没有测试统计量,p 值。
是否可以计算这些值以确保显着性?为什么它不能直接在软件上使用(或任何其他软件?)
求解非负最小二乘 (NNLS) 是基于一种不同于常规最小二乘的算法。
使用常规最小二乘法,您可以通过结合使用 t 检验和系数方差估计来表达 p 值。
估计系数的样本方差的表达式为误差的方差通常是未知的但可以使用残差进行估计。该表达式可以从根据测量值
这意味着/假设可以是负数,因此当系数受到限制时它会分解。
系数估计的方差/分布也渐近地接近观察到的Fisher 信息矩阵:
但我不确定这是否适用于此。NNLS 估计不是无偏估计。
每当表达式变得过于复杂时,您都可以使用计算方法来估计误差。使用蒙特卡洛方法,您可以通过模拟实验的重复(重新计算/建模新数据)来模拟实验的随机性分布,并在此基础上估计系数的方差。
您可以做的是对模型系数和残差方差的观测估计值,并基于此计算新数据(几千次重复,但这取决于您希望的精度)您可以观察系数的分布(和变化,并由此得出误差的估计值)。(并且有更复杂的方案来执行此建模)
如果您可以使用 RI,认为您还可以使用bbmle
'mle2
函数来优化最小二乘似然函数并计算非负 nnls 系数的 95% 置信区间。此外,您可以通过优化系数的对数来考虑到您的系数不会变为负数,因此在反向转换的尺度上它们永远不会变为负数。
这是一个说明这种方法的数值示例,这里是在对带有高斯噪声的高斯形色谱峰的叠加进行去卷积的背景下:(欢迎任何评论)
首先让我们模拟一些数据:
require(Matrix)
n = 200
x = 1:n
npeaks = 20
set.seed(123)
u = sample(x, npeaks, replace=FALSE) # peak locations which later need to be estimated
peakhrange = c(10,1E3) # peak height range
h = 10^runif(npeaks, min=log10(min(peakhrange)), max=log10(max(peakhrange))) # simulated peak heights, to be estimated
a = rep(0, n) # locations of spikes of simulated spike train, need to be estimated
a[u] = h
gauspeak = function(x, u, w, h=1) h*exp(((x-u)^2)/(-2*(w^2))) # shape of single peak, assumed to be known
bM = do.call(cbind, lapply(1:n, function (u) gauspeak(x, u=u, w=5, h=1) )) # banded matrix with theoretical peak shape function used
y_nonoise = as.vector(bM %*% a) # noiseless simulated signal = linear convolution of spike train with peak shape function
y = y_nonoise + rnorm(n, mean=0, sd=100) # simulated signal with gaussian noise on it
y = pmax(y,0)
par(mfrow=c(1,1))
plot(y, type="l", ylab="Signal", xlab="x", main="Simulated spike train (red) to be estimated given known blur kernel & with Gaussian noise")
lines(a, type="h", col="red")
现在让我们用一个带状矩阵对测量的噪声信号进行反卷积,该y
矩阵包含已知高斯形模糊核的移位副本bM
(这是我们的协变量/设计矩阵)。
首先,让我们用非负最小二乘法对信号进行反卷积:
library(nnls)
library(microbenchmark)
microbenchmark(a_nnls <- nnls(A=bM,b=y)$x) # 5.5 ms
plot(x, y, type="l", main="Ground truth (red), nnls estimate (blue)", ylab="Signal (black) & peaks (red & blue)", xlab="Time", ylim=c(-max(y),max(y)))
lines(x,-y)
lines(a, type="h", col="red", lwd=2)
lines(-a_nnls, type="h", col="blue", lwd=2)
yhat = as.vector(bM %*% a_nnls) # predicted values
residuals = (y-yhat)
nonzero = (a_nnls!=0) # nonzero coefficients
n = nrow(bM)
p = sum(nonzero)+1 # nr of estimated parameters = nr of nonzero coefficients+estimated variance
variance = sum(residuals^2)/(n-p) # estimated variance = 8114.505
现在让我们优化我们的高斯损失目标的负对数似然,并优化你的系数的对数,以便在反向变换的尺度上它们永远不会是负的:
library(bbmle)
XM=as.matrix(bM)[,nonzero,drop=FALSE] # design matrix, keeping only covariates with nonnegative nnls coefs
colnames(XM)=paste0("v",as.character(1:n))[nonzero]
yv=as.vector(y) # response
# negative log likelihood function for gaussian loss
NEGLL_gaus_logbetas <- function(logbetas, X=XM, y=yv, sd=sqrt(variance)) {
-sum(stats::dnorm(x = y, mean = X %*% exp(logbetas), sd = sd, log = TRUE))
}
parnames(NEGLL_gaus_logbetas) <- colnames(XM)
system.time(fit <- mle2(
minuslogl = NEGLL_gaus_logbetas,
start = setNames(log(a_nnls[nonzero]+1E-10), colnames(XM)), # we initialise with nnls estimates
vecpar = TRUE,
optimizer = "nlminb"
)) # takes 0.86s
AIC(fit) # 2394.857
summary(fit) # now gives log(coefficients) (note that p values are 2 sided)
# Coefficients:
# Estimate Std. Error z value Pr(z)
# v10 4.57339 2.28665 2.0000 0.0454962 *
# v11 5.30521 1.10127 4.8173 1.455e-06 ***
# v27 3.36162 1.37185 2.4504 0.0142689 *
# v38 3.08328 23.98324 0.1286 0.8977059
# v39 3.88101 12.01675 0.3230 0.7467206
# v48 5.63771 3.33932 1.6883 0.0913571 .
# v49 4.07475 16.21209 0.2513 0.8015511
# v58 3.77749 19.78448 0.1909 0.8485789
# v59 6.28745 1.53541 4.0950 4.222e-05 ***
# v70 1.23613 222.34992 0.0056 0.9955643
# v71 2.67320 54.28789 0.0492 0.9607271
# v80 5.54908 1.12656 4.9257 8.407e-07 ***
# v86 5.96813 9.31872 0.6404 0.5218830
# v87 4.27829 84.86010 0.0504 0.9597911
# v88 4.83853 21.42043 0.2259 0.8212918
# v107 6.11318 0.64794 9.4348 < 2.2e-16 ***
# v108 4.13673 4.85345 0.8523 0.3940316
# v117 3.27223 1.86578 1.7538 0.0794627 .
# v129 4.48811 2.82435 1.5891 0.1120434
# v130 4.79551 2.04481 2.3452 0.0190165 *
# v145 3.97314 0.60547 6.5620 5.308e-11 ***
# v157 5.49003 0.13670 40.1608 < 2.2e-16 ***
# v172 5.88622 1.65908 3.5479 0.0003884 ***
# v173 6.49017 1.08156 6.0008 1.964e-09 ***
# v181 6.79913 1.81802 3.7399 0.0001841 ***
# v182 5.43450 7.66955 0.7086 0.4785848
# v188 1.51878 233.81977 0.0065 0.9948174
# v189 5.06634 5.20058 0.9742 0.3299632
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# -2 log L: 2338.857
exp(confint(fit, method="quad")) # backtransformed confidence intervals calculated via quadratic approximation (=Wald confidence intervals)
# 2.5 % 97.5 %
# v10 1.095964e+00 8.562480e+03
# v11 2.326040e+01 1.743531e+03
# v27 1.959787e+00 4.242829e+02
# v38 8.403942e-20 5.670507e+21
# v39 2.863032e-09 8.206810e+11
# v48 4.036402e-01 1.953696e+05
# v49 9.330044e-13 3.710221e+15
# v58 6.309090e-16 3.027742e+18
# v59 2.652533e+01 1.090313e+04
# v70 1.871739e-189 6.330566e+189
# v71 8.933534e-46 2.349031e+47
# v80 2.824905e+01 2.338118e+03
# v86 4.568985e-06 3.342200e+10
# v87 4.216892e-71 1.233336e+74
# v88 7.383119e-17 2.159994e+20
# v107 1.268806e+02 1.608602e+03
# v108 4.626990e-03 8.468795e+05
# v117 6.806996e-01 1.021572e+03
# v129 3.508065e-01 2.255556e+04
# v130 2.198449e+00 6.655952e+03
# v145 1.622306e+01 1.741383e+02
# v157 1.853224e+02 3.167003e+02
# v172 1.393601e+01 9.301732e+03
# v173 7.907170e+01 5.486191e+03
# v181 2.542890e+01 3.164652e+04
# v182 6.789470e-05 7.735850e+08
# v188 4.284006e-199 4.867958e+199
# v189 5.936664e-03 4.236704e+06
library(broom)
signlevels = tidy(fit)$p.value/2 # 1-sided p values for peak to be sign higher than 1
adjsignlevels = p.adjust(signlevels, method="fdr") # FDR corrected p values
a_nnlsbbmle = exp(coef(fit)) # exp to backtransform
max(a_nnls[nonzero]-a_nnlsbbmle) # -9.981704e-11, coefficients as expected almost the same
plot(x, y, type="l", main="Ground truth (red), nnls bbmle logcoeff estimate (blue & green, green=FDR p value<0.05)", ylab="Signal (black) & peaks (red & blue)", xlab="Time", ylim=c(-max(y),max(y)))
lines(x,-y)
lines(a, type="h", col="red", lwd=2)
lines(x[nonzero], -a_nnlsbbmle, type="h", col="blue", lwd=2)
lines(x[nonzero][(adjsignlevels<0.05)&(a_nnlsbbmle>1)], -a_nnlsbbmle[(adjsignlevels<0.05)&(a_nnlsbbmle>1)],
type="h", col="green", lwd=2)
sum((signlevels<0.05)&(a_nnlsbbmle>1)) # 14 peaks significantly higher than 1 before FDR correction
sum((adjsignlevels<0.05)&(a_nnlsbbmle>1)) # 11 peaks significant after FDR correction
我没有尝试比较这种方法相对于非参数或参数自举的性能,但它肯定要快得多。
我也倾向于认为我应该能够nnls
根据观察到的 Fisher 信息矩阵计算非负系数的 Wald 置信区间,以对数变换系数尺度计算以强制执行非负性约束并在估计值处进行nnls
评估。
我认为这是这样的,实际上应该在形式上与我mle2
上面使用的相同:
XM=as.matrix(bM)[,nonzero,drop=FALSE] # design matrix
posbetas = a_nnls[nonzero] # nonzero nnls coefficients
dispersion=sum(residuals^2)/(n-p) # estimated dispersion (variance in case of gaussian noise) (1 if noise were poisson or binomial)
information_matrix = t(XM) %*% XM # observed Fisher information matrix for nonzero coefs, ie negative of the 2nd derivative (Hessian) of the log likelihood at param estimates
scaled_information_matrix = (t(XM) %*% XM)*(1/dispersion) # information matrix scaled by 1/dispersion
# let's now calculate this scaled information matrix on a log transformed Y scale (cf. stat.psu.edu/~sesa/stat504/Lecture/lec2part2.pdf, slide 20 eqn 8 & Table 1) to take into account the nonnegativity constraints on the parameters
scaled_information_matrix_logscale = scaled_information_matrix/((1/posbetas)^2) # scaled information_matrix on transformed log scale=scaled information matrix/(PHI'(betas)^2) if PHI(beta)=log(beta)
vcov_logscale = solve(scaled_information_matrix_logscale) # scaled variance-covariance matrix of coefs on log scale ie of log(posbetas) # PS maybe figure out how to do this in better way using chol2inv & QR decomposition - in R unscaled covariance matrix is calculated as chol2inv(qr(XW_glm)$qr)
SEs_logscale = sqrt(diag(vcov_logscale)) # SEs of coefs on log scale ie of log(posbetas)
posbetas_LOWER95CL = exp(log(posbetas) - 1.96*SEs_logscale)
posbetas_UPPER95CL = exp(log(posbetas) + 1.96*SEs_logscale)
data.frame("2.5 %"=posbetas_LOWER95CL,"97.5 %"=posbetas_UPPER95CL,check.names=F)
# 2.5 % 97.5 %
# 1 1.095874e+00 8.563185e+03
# 2 2.325947e+01 1.743600e+03
# 3 1.959691e+00 4.243037e+02
# 4 8.397159e-20 5.675087e+21
# 5 2.861885e-09 8.210098e+11
# 6 4.036017e-01 1.953882e+05
# 7 9.325838e-13 3.711894e+15
# 8 6.306894e-16 3.028796e+18
# 9 2.652467e+01 1.090340e+04
# 10 1.870702e-189 6.334074e+189
# 11 8.932335e-46 2.349347e+47
# 12 2.824872e+01 2.338145e+03
# 13 4.568282e-06 3.342714e+10
# 14 4.210592e-71 1.235182e+74
# 15 7.380152e-17 2.160863e+20
# 16 1.268778e+02 1.608639e+03
# 17 4.626207e-03 8.470228e+05
# 18 6.806543e-01 1.021640e+03
# 19 3.507709e-01 2.255786e+04
# 20 2.198287e+00 6.656441e+03
# 21 1.622270e+01 1.741421e+02
# 22 1.853214e+02 3.167018e+02
# 23 1.393520e+01 9.302273e+03
# 24 7.906871e+01 5.486398e+03
# 25 2.542730e+01 3.164851e+04
# 26 6.787667e-05 7.737904e+08
# 27 4.249153e-199 4.907886e+199
# 28 5.935583e-03 4.237476e+06
z_logscale = log(posbetas)/SEs_logscale # z values for log(coefs) being greater than 0, ie coefs being > 1 (since log(1) = 0)
pvals = pnorm(z_logscale, lower.tail=FALSE) # one-sided p values for log(coefs) being greater than 0, ie coefs being > 1 (since log(1) = 0)
pvals.adj = p.adjust(pvals, method="fdr") # FDR corrected p values
plot(x, y, type="l", main="Ground truth (red), nnls estimates (blue & green, green=FDR Wald p value<0.05)", ylab="Signal (black) & peaks (red & blue)", xlab="Time", ylim=c(-max(y),max(y)))
lines(x,-y)
lines(a, type="h", col="red", lwd=2)
lines(-a_nnls, type="h", col="blue", lwd=2)
lines(x[nonzero][pvals.adj<0.05], -a_nnls[nonzero][pvals.adj<0.05],
type="h", col="green", lwd=2)
sum((pvals<0.05)&(posbetas>1)) # 14 peaks significantly higher than 1 before FDR correction
sum((pvals.adj<0.05)&(posbetas>1)) # 11 peaks significantly higher than 1 after FDR correction
这些计算的结果和返回的mle2
结果几乎相同(但要快得多),所以我认为这是正确的,并且与我们隐含地用mle2
......
仅使用常规线性模型拟合在拟合中用正系数重新拟合协变量nnls
是行不通的,因为这种线性模型拟合不会考虑非负性约束,因此会导致可能变为负数的荒谬置信区间。Jason Lee 和 Jonathan Taylor 的这篇论文“Exact post model selection inference for边缘筛选”还提出了一种对非负 nnls(或 LASSO)系数进行后模型选择推断的方法,并为此使用截断的高斯分布。不过,我还没有看到这种方法的任何公开可用的实现 nnls 适合 - 对于 LASSO 适合,有选择性推理做类似事情的包。如果有人碰巧有实现,请告诉我!
在上述方法中,还可以将数据拆分到训练和验证集中(例如奇数和偶数观察),并从训练集中推断具有正系数的协变量,然后从验证集中计算置信区间和 p 值。这将更能抵抗过度拟合,尽管它也会导致功率损失,因为一个人只会使用一半的数据。我在这里没有这样做,因为非负约束本身在防止过度拟合方面已经非常有效。
要更具体地说明 @Martijn 提到的蒙特卡洛方法,您可以使用 Bootstrap,这是一种重采样方法,涉及从原始数据(有替换)多个数据集中进行采样,以估计估计系数的分布,因此估计任何相关统计数据,包括置信区间和 p 值。
此处详细介绍了广泛使用的方法:Efron,Bradley。“引导方法:再看看折刀。” 统计学上的突破。施普林格,纽约,纽约,1992. 569-593。
Matlab 已实现,请参阅https://www.mathworks.com/help/stats/bootstrp.html尤其是标题为引导回归模型的部分。