请参阅以下 Python2 的 Python 脚本。
答案的灵感来自大卫 C 的答案。
我的最终答案是,根据https://www.ssa.gov/oact/babynames/limits.html “National Data “从 2006 年开始。
概率是根据二项分布计算的,其中 Jacob-Probability 是成功的概率。
import pandas as pd
from scipy.stats import binom
data = pd.read_csv(r"yob2006.txt", header=None, names=["Name", "Sex", "Count"])
# count of children in the dataset:
sumCount = data.Count.sum()
# do calculation for every name:
for i, row in data.iterrows():
# relative counts of each name being interpreted as probabily of occurrence
data.loc[i, "probability"] = data.loc[i, "Count"]/float(sumCount)
# Probabilites being five or more children with that name in a class of size n=25,50 or 100
data.loc[i, "atleast5_class25"] = 1 - binom.cdf(4,25,data.loc[i, "probability"])
data.loc[i, "atleast5_class50"] = 1 - binom.cdf(4,50,data.loc[i, "probability"])
data.loc[i, "atleast5_class100"] = 1 - binom.cdf(4,100,data.loc[i, "probability"])
maxP25 = data["atleast5_class25"].max()
maxP50 = data["atleast5_class50"].max()
maxP100 = data["atleast5_class100"].max()
print ("""Max. probability for at least five kids with same name out of 25: {:.2} for name {}"""
.format(maxP25, data.loc[data.atleast5_class25==maxP25,"Name"].values[0]))
print
print ("""Max. probability for at least five kids with same name out of 50: {:.2} for name {}, of course."""
.format(maxP50, data.loc[data.atleast5_class50==maxP50,"Name"].values[0]))
print
print ("""Max. probability for at least five kids with same name out of 100: {:.2} for name {}, of course."""
.format(maxP100, data.loc[data.atleast5_class100==maxP100,"Name"].values[0]))
最大限度。25 个孩子中至少有 5 个同名孩子的概率:Jacob 名字为 4.7e-07
最大限度。50 个孩子中至少有 5 个同名孩子的概率:当然,名字 Jacob 的概率为 1.6e-05。
最大限度。100 个中至少有 5 个同名的孩子的概率:当然,名字 Jacob 的概率为 0.00045。
与大卫 C 的结果相同的 10 倍。谢谢。(我的回答没有总结所有的名字,应该可以讨论)