我有两个不同的测量仪器,A 和 B,都测量相同的物理特性一个物体但具有不同的“质量”:B给出了一个已知不确定度的测量值,而我不知道A给出的测量值的不确定度。
我有不同的物体,我测量属性对于所有带A的人,所以我得到了一个测量列表在哪里是属性的度量为了-th 对象。
对象没有标记,给定一个对象,我只知道它的测量属于但我无法从中提取测量值. 此外,我不能用 A 来测量我过去用 A 测量过的对象。
然后我随机选择从对象对象。我测量所有带有 B 的样本对象,我得到一个测量列表. 请注意,下标中的索引不是对象的标签,所以我无法直接比较和.
是否可以用上述数据估计 A 给出的测量值的不确定性?
我在考虑比较经验累积分布函数与其中之一但这只是一个想法,我无法进一步详细说明。
是否有任何既定标准可以涵盖我的问题?例如,我找到了对“ISO 5725:测量方法和结果的准确性(真实性和精确度)”的引用,但我无法访问它。
更新:
我发现我的问题类似于如何测试从两个设备读取的数据是否显着不同?在我读到Michael Lew的答案的地方,他推荐了LUDBROOK, John 的论文。比较测量者和测量方法的统计技术:批判性评论。临床和实验药理学和生理学,2002,29.7:527-536。但不幸的是,在我看来,这篇论文需要测量之间的配对。
更新 2:
我写了一个 R 脚本来模拟我的问题。
set.seed(42)
instrument_measurement <- function(true_value,gain,offset,dispersion)
# The instrument has three parameters: the true_value is transformed by means
# of a linear transformation described by parameters offset and gain; then there
# is a dispersion parameter. An ideal instrument would have gain=1, offset=0
# and dispersion that approaches to zero.
{
return(rnorm(length(true_value),mean=gain*true_value-offset,sd=dispersion))
}
N=1000
true_mean = 0
true_sd = 1
# I simulate the property to be measured for N objects, here the property is
# normally distributed...
true_values = rnorm(N,mean=true_mean,sd=true_sd)
# but it could also be a mixture of normal distributions:
# components <- sample(1:3,prob=c(1/7,5/7,1/7),size=N,replace=TRUE)
# mus <- c(-0.2,0,+0.3)
# sds <- sqrt(c(0.05,0.05,0.05))
# true_values <- rnorm(n=N,mean=mus[components],sd=sds[components])
# plot(density(true_values))
# The "quality" of instrument B is "good enough" to measure the true values:
gain_B = 1
offset_B = true_sd/10
dispersion_B = true_sd/10
# The instrument B has a lower "quality" than the one of instrument A:
gain_A = 1.1*gain_B
offset_A=-2*offset_B
dispersion_A=5*dispersion_B
# I simulate the measuremente made by instrument A:
L_A = instrument_measurement(true_values,gain_A,offset_A,dispersion_A)
# I make the sample:
sample_to_measure_with_B = sample(true_values,100,replace=F)
# I simulate the measuremente made by instrument B:
L_B = instrument_measurement(sample_to_measure_with_B,gain_B,offset_B,dispersion_B)
# I plot the empirical CDF of the true values, of the measurements made with
# instrument A and of the measurements made with instrument B
plot(ecdf(true_values),col="grey",main="",xlab="x, measured property",ylab="value of empirical CDF")
lines(ecdf(L_A),col="blue")
lines(ecdf(L_B),col="orange")
legend(x=(max(true_values)+mean(true_values))/2,y=.5,legend=c("true","A","B"),col=c("grey","blue","orange"),lty=c(1,1,1))
title("Empirical CDFs")
参考脚本,可以估计gain_A
,offset_A
和dispersion_A
fromL_A
和L_B
? 估计中的不确定性是什么?
我有一个定义成本函数并尝试在参数空间中最小化它的不优雅的想法gain
,offset
并且dispersion
:
function <- ecdf_distance(ecdf1,ecdf2)
{
# return 0 if ecdf1 is "equal" to ecdf2
# return a positive scalar that measures the difference between ecdf1 and ecdf2
}
function <- cost(parameters)
{
L = instrument_measurement(L_B,parameters$gain,parameter$offset,parameter$dispersion)
return(ecdf_distance(ecdf(L_A),ecdf(L))
}
我做了一些测试gain=1
,但没有运气......成本函数似乎是恒定的dispersion
......我担心我缺乏一些关于这个问题的理论/数学:-)