我正在运行这个泊松回归,并且在偏差和皮尔逊残差方面面临着非常强烈的模式,什么是纠正模型的合适方法?
这是我的数据的负责人:
> head(bob_poisson_aggreg)
ticketCount artistVotes capacity ticketsRemain
1 120 1168 169 49
2 21 4365 379 358
3 153 3710 2352 2199
4 158 8766 615 457
5 25 622 50 25
6 314 7700 700 386
bob_poisson_mean_aggreg.artistRating
1 4.57
2 4.67
3 4.90
4 4.49
5 4.38
6 4.42
这是我运行的模型:
mod_poi_1 <- glm(ticketCount ~. , family = poisson , data = bob_poisson_aggreg)
summary(mod_poi_1)
Call:
glm(formula = ticketCount ~ ., family = poisson, data = bob_poisson_aggreg)
Deviance Residuals:
Min 1Q Median 3Q Max
-10.5927 -2.5578 0.1436 2.0250 7.7396
Coefficients:
Estimate Std. Error z value
(Intercept) 2.699e+00 1.260e-01 21.418
artistVotes -1.124e-05 4.252e-07 -26.435
capacity 8.464e-03 7.584e-05 111.604
ticketsRemain -8.449e-03 8.109e-05 -104.188
bob_poisson_mean_aggreg.artistRating 1.914e-01 2.823e-02 6.781
Pr(>|z|)
(Intercept) < 2e-16 ***
artistVotes < 2e-16 ***
capacity < 2e-16 ***
ticketsRemain < 2e-16 ***
bob_poisson_mean_aggreg.artistRating 1.19e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 18688.0 on 274 degrees of freedom
Residual deviance: 3388.1 on 270 degrees of freedom
AIC: 4972
Number of Fisher Scoring iterations: 4
我什至不确定泊松模型在这里是否合适,但如果是,我应该如何继续?我会对响应变量进行转换:“ticketCount”。
是否有一些一般程序可以遵循?
我将非常感谢任何见解或参考!



