我正在寻求一些帮助,为以下情况设计假设检验。
我有一个放射源,它时不时地吐出一个粒子。
另外,我有两个粒子探测器:一个红色粒子探测器和一个绿色粒子探测器。每当红色粒子探测器检测到粒子时,它就会闪烁红灯;让表示粒子被红色检测器检测到的事件,并且红色检测器未检测到粒子的补充事件。每当绿色粒子探测器检测到粒子时,它就会闪烁绿灯;让是绿色检测器检测到粒子的事件,并且它没有。因此,每个发射的粒子都属于以下四个类别之一:
- 由两个检测器检测到(),
- 由红色检测器检测到,但绿色检测器未检测到(),
- 由绿色检测器检测到,但不是红色检测器(), 或者
- 任一检测器均未检测到()。
每次发射一个粒子,红色探测器有一定的概率探测到粒子,绿色探测器有一定的概率探测到粒子。(当没有粒子存在时,它们永远不会触发错误检测。)我知道每个粒子的处理方式相同且独立于所有其他粒子,但我不知道这两个检测器是否相互独立。它们可能是独立的(即,),或者它们是相关的(即,); 我不知道是哪种情况,先验的。
我数了数-detections(即两个检测器检测到某物的次数),- 检测次数(即红色检测器检测到某物但未检测到绿色检测器的次数),以及- 检测。不幸的是,我无法衡量的数量- 情况,因为这些粒子没有被任何一个检测器检测到。在实验结束时,我有三个非负整数,代表这些计数。
我想检验假设这两个检测器是独立的,即那个事件独立于事件. 任何人都可以帮助提出一种计算方法-这个假设的值,给定来自这样一个实验的 3 个数字?
我会非常满意计算机算法/程序来计算-价值。我不需要一个简单的公式;可以由计算机计算的东西就足够了。
这是另一种查看方式。我们可以形成一个 2x2 列联表,例如这个:
克| G --------- 右 | 17 22 r | 12 ?
记录我们看到的 17-事件,22-事件,等等。不幸的是,右下角的单元格是空的,因为我们不知道有多少-粒子被发射。如果我们对所有四个细胞都有计数,大概我们可以使用 Fisher 精确检验,但我们没有。此外,我们没有得到或者(我猜它们是令人讨厌的参数)或发射的粒子总数。
有什么建议么?