带有 ARIMA 误差的回归由以下公式给出(见于 Hyndman 等人,1998 年):
在哪里被建模为 ARIMA 过程。
如果我们有这个模型是 ARIMA, 然后, 和由普通回归建模。
假设以下数据:
a <- structure(c(29305, 9900, 9802, 17743, 49300, 17700, 24100, 11000,
10625, 23644, 38011, 16404, 14900, 16300, 18700, 11814, 13934,
12124, 18097, 30026, 3600, 15700, 12300, 14600), .Tsp = c(2010.25,
2012.16666666667, 12), class = "ts")
b <- structure(c(1.108528016, 1.136920872, 1.100239002, 1.057191265,
1.044200511, 1.102063834, 1.083847756, 1.068585841, 1.084879628,
1.232979511, 1.168894672, 1.257302058, 1.264967051, 1.234793782,
1.306452369, 1.252644047, 1.178593218, 1.124432965, 1.132878661,
1.189926986, 1.17249669, 1.176285957, 1.176552, 1.179178082), .Tsp =
c(2010.25, 2012.16666666667, 12), class = "ts")
如果我使用auto.arima函数对其建模,我有:
auto.arima(a, xreg=b)
Series: a
ARIMA(0,0,0) with zero mean
Coefficients:
b
15639.266
s.e. 1773.186
sigma^2 estimated as 101878176: log likelihood=-255.33
AIC=514.65 AICc=515.22 BIC=517.01
lm(a~b)
Call:
lm(formula = a ~ b)
Coefficients:
(Intercept) b
48638 -26143
模型的系数不同。他们不应该是一样的吗?我错过了什么?