一本流行的元分析教科书 (1) 讨论了如何将相关性转换为 Cohen 的(即标准化均值差):
我对如何解释结果感到困惑,不知道比较的两个“组”对应的是什么。我可以为这个公式 (2) 找到的推导是针对点双列相关,即 Pearson 的相关性是在已经二分法的上计算的,而不是在上面的文本(突出显示)清楚地说明的连续数据上计算的。
因此,我进行了以下模拟,其中我构建了双变量正态数据,对进行了中位数拆分(因为这些公式假设组大小相等),然后将我使用二分数据计算进行比较我通过转换连续和的相关性获得:
# convert Cohen's d to r
# assumes equal sample sizes in each group
# see Borenstein text
d_to_r = Vectorize( function(d) {
d / sqrt(d^2 + 4)
}, vectorize.args = "d" )
# this is the inverse of above, so also needs equal sample sizes
r_to_d = Vectorize( function(r) {
(2 * r) / (1 - r^2)
}, vectorize.args = "r" )
# generate bivariate normal X and Y
library(MASS)
N = 100000
cor = matrix( c(1, 0.5, 0.5, 1), byrow = TRUE, nrow=2 )
data = as.data.frame( mvrnorm( n = N, mu = c(0, 0), Sigma = cor ) )
names(data) = c("xc", "y")
# dichotomize X
# Borenstein does not say WHERE to dichotomize
# but for equal group sizes, we would need to use median
cutoff = median(data$xc) # should be almost 0
data$xb = ifelse( data$xc < cutoff, 0, 1 )
##### Method 0: True Cohen's d Using Dichotomized X
# with metafor (using bias correction)
library(metafor)
ES = escalc( m1i = m1, m2i = m0, n1i = n1, n2i = n0,
sd1i = sqrt(sig2.1), sd2i = sqrt(sig2.0), measure = "SMD" )
( d.real = ES$yi[1] )
# sanity check: manually (without slight bias correction)
sig2.0 = var( data$y[ data$xb == 0 ] )
sig2.1 = var( data$y[ data$xb == 1 ] )
n0 = sum( data$xb == 0 )
n1 = sum( data$xb == 1 )
m0 = mean( data$y[ data$xb == 0 ] )
m1 = mean( data$y[ data$xb == 1 ] )
num = (n0 - 1) * sig2.0 + (n1 - 1) * sig2.1
denom = n0 + n1 - 2
sig.pool = sqrt( num / denom )
( d.man = (m1 - m0) / sig.pool )
##### Method 1: Borenstein's Transformation on Correlation Using Continuous X
rc = cor( data$xc, data$y )
##### Method 2: Borenstein's Transformation on Correlation Using Binary X
rb = cor( data$xb, data$y )
##### Compare Them
d.real; r_to_d( rc ); r_to_d( rb )
# MIDDLE ONE IS HORRIBLE.
该模拟表明,点双列相关 ( ) 的转换与二分数据 ( )rb
中的“真实”科恩一致,而连续数据 ( ) 的相关转换则完全不同。(当然,无论如何这两种转换都不可能起作用,因为这两种相关性显然不等价。)d.real
rc
我的问题:教科书在说什么?也就是说,在什么情况下,您可以将在连续数据上计算的相关性转换为 Cohen 的的精确解释是什么?
参考
Borenstein, M., Hedges, LV, Higgins, J., & Rothstein, HR (2009)。元分析导论。约翰威利父子公司
McGrath, RE 和 Meyer, GJ (2006)。当效果大小不一致时:r 和 d 的情况。心理学方法,11(4),386。