遗憾的是,它的文档Matching相当不完整,它的作用非常神秘。很明显,它在估计治疗效果及其标准误时采用了与 Stuart (2010)(以及 Ho、Imai、King 和 Stuart 阵营)不同的方法。相反,它从 Abadie & Imbens (2006, 2011) 中汲取了大量灵感,他们描述了方差估计器和匹配估计器的偏差校正。虽然 Stuart 及其同事考虑匹配不改变效果估计方差的非参数预处理方法,但 Abadie、Imbens 和 Sekhon 仔细考虑了匹配引起的效果估计的可变性。因此,MatchingStuart (2010) 中没有描述执行的分析。
Ho, Imai, King, & Stuart (2007)(MatchIt包的作者)描述的匹配哲学是,在没有匹配的情况下执行的分析应该是在匹配之后执行的,匹配的好处是对错误指定所用模型的功能形式。最基本的模型根本没有,即治疗组均值的差异,但治疗和协变量的回归模型也起作用。该小组认为不需要对标准误差进行调整,因此您从匹配样本的标准分析中获得的标准误差就足够了。这就是为什么您可以简单地从输出中导出匹配的样本MatchIt并对其进行回归,忘记匹配的样本来自匹配程序。奥斯汀还认为,标准误差应该解释数据的配对性质,尽管MatchIt阵营认为匹配并不意味着配对,未配对的标准误差就足够了。使用具有配对成员资格的集群稳健标准错误作为集群应该可以实现这一点。这可以在使用或通过使用sandwich包估计效果之后使用包来完成。glm()jtools
使用的匹配原理将匹配Matching行为视为分析的一部分,并且必须考虑它在效果估计中引起的可变性。中使用的大部分理论Matching来自 Abadie 和 Imbens 撰写的一系列论文,他们讨论了匹配估计量的偏差和方差。尽管 的文档Matching描述性不是很强,但 Stata 函数teffects nnmatch几乎是相同的,并且使用了所有相同的理论,以及它的文档非常具有描述性。效果估计器是 Abadie & Imbens (2006) 所描述的;这不是均值估计量的简单差异,因为存在平局、k:1 匹配和替换匹配的可能性。其标准误差在论文中有所描述。有一个执行偏差校正的选项,它使用 Abadie & Imbens (2011) 描述的技术。这与对匹配集执行回归不同。偏差校正匹配估计器不是使用匹配来为回归估计器提供稳健性,而是通过使用协变量的参数偏差校正来为匹配估计器提供稳健性。
遗传匹配和标准“最近邻”匹配之间的唯一区别是用于确定两个单元是否彼此靠近的距离度量。在teffects nnmatchStata 和Match()中Matching,默认为马氏距离。遗传匹配的创新之处在于距离矩阵不断地重新加权,直到找到良好的平衡,而不是仅仅使用默认的距离矩阵,因此匹配估计器的理论仍然适用。
我认为编写方法部分的清晰方法可能类似于
使用匹配包 (Sekhon, 2011)中实现的遗传匹配算法 (Diamond & Sekhon, 2013) 进行匹配。使用Matching中的Match函数
估计治疗效果,该函数实现了 Abadie 和 Imbens (2006) 描述的匹配估计器和标准误差估计器。为了提高稳健性,我们按照 Abadie 和 Imbens (2011) 的描述对所有连续协变量进行了偏差校正,并使用
Match函数中的BiasAdjust选项来实现。
这使您的分析具有可重复性,并且好奇的读者可以自己研究文献(尽管Matching几乎是行业标准并且已经很受信任)。
Abadie, A. 和 Imbens, GW (2006)。平均治疗效果的匹配估计量的大样本特性。计量经济学,74(1),235-267。https://doi.org/10.1111/j.1468-0262.2006.00655.x
Abadie, A. 和 Imbens, GW (2011)。平均治疗效果的偏差校正匹配估计量。商业与经济统计杂志,29(1),1-11。https://doi.org/10.1198/jbes.2009.07333
Diamond, A. 和 Sekhon, JS (2013)。用于估计因果效应的遗传匹配:在观察性研究中实现平衡的通用多元匹配方法。经济与统计评论,95(3),932-945。
Ho, DE, Imai, K., King, G. 和 Stuart, EA (2007)。匹配作为非参数预处理以减少参数因果推理中的模型依赖性。政治分析,15(3),199-236。https://doi.org/10.1093/pan/mpl013
斯图尔特,EA (2010)。因果推理的匹配方法:回顾和展望。统计科学,25(1),1-21。https://doi.org/10.1214/09-STS313