我正在尝试测量我在 R 中安装的一些线性回归模型的准确性。我遇到了这个页面,提供了一种称为技术的技术Min_Max Accuracy,解释为:
Min_Max Accuracy => mean(min(actual, predicted)/max(actual, predicted))
在 R 中:
min_max_accuracy <- mean(apply(actuals_preds, 1, min) / apply(actuals_preds, 1, max))
并actuals_pred由此衍生:
set.seed(100) # setting seed to reproduce results of random sampling
trainingRowIndex <- sample(1:nrow(cars), 0.8*nrow(cars)) # row indices for training data
trainingData <- cars[trainingRowIndex, ] # model training data
testData <- cars[-trainingRowIndex, ]
lmMod <- lm(dist ~ speed, data=trainingData) # build the model
distPred <- predict(lmMod, testData) # predict distance
actuals_preds <- data.frame(cbind(actuals=testData$dist, predicteds=distPred))
但是,我无法理解Min_Max Accuracy代表什么。你能告诉我它代表什么吗?有没有我可以查到的这个概念的同义词?谢谢