以天为分类变量的模型具有七个级别,确实考虑了每一天。可以这么说,您不需要“手动”进行操作。
例如:
library(MASS)
# Construct sample data: 700 observations, 100 on each of 7 days of week
Day <- factor(rep(c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"), 100),
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"),
ordered=TRUE)
Day.effect <- rep(rnorm(7), 100)
y <- rbinom(700, 1, 1/(1+exp(-Day.effect)))
# Estimate logit model without intercept (captures each day's effect)
foo <- summary(glm(y~Day-1, family=binomial))
# compare actuals to estimates
coefs <- foo$coefficients
coefs <- cbind(Day.effect, coefs)
colnames(coefs)[1] <- "Actual"
options(digits=3)
> coefs
Actual Estimate Std. Error z value Pr(>|z|)
DayMonday 0.520 0.490 0.206 2.376 1.75e-02
DayTuesday -0.230 -0.323 0.203 -1.593 1.11e-01
DayWednesday -0.247 -0.447 0.205 -2.182 2.91e-02
DayThursday -1.156 -1.266 0.241 -5.243 1.58e-07
DayFriday 0.282 0.160 0.201 0.799 4.24e-01
DaySaturday -0.383 -0.405 0.204 -1.986 4.70e-02
DaySunday -0.357 -0.447 0.205 -2.182 2.91e-02
这似乎只是你想要的。