基于项目的算法
for every item i that u has no preference for yet
for every item j that u has a preference for
compute a similarity s between i and j
add u's preference for j, weighted by s, to a running average
return the top items, ranked by weighted average
基于用户的算法
for every item i that u has no preference for yet
for every other user v that has a preference for i
compute a similarity s between u and v
add v's preference for i, weighted by s, to a running average
return the top items, ranked by weighted average
项目与基于用户:
1) 推荐器随着他们必须处理的项目或用户的数量而扩展,因此在某些情况下,每种类型的性能都比另一种更好
2)项目之间的相似性估计比用户之间的相似性更容易随着时间的推移而收敛
3)我们可以计算和缓存收敛的相似性,这可以为基于项目的推荐器提供性能优势
4)基于项目的推荐器从用户的首选项目列表开始,因此不需要像基于用户的推荐器那样的最近的项目邻域