我尝试了上面的代码,但您缺少第一行数据。
1.原创
tdf = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data', sep = ',', header=0)
tdf.shape
(698, 11)
2.和前面的问题一样,去掉header=0
tdf = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data', sep = ',')
tdf.shape
(698, 11)
3. 新答案,在读取 csv 时添加列名,确实得到所有行
tdf = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data', sep = ',', names=['Sample code number: id number','Clump Thickness: 1 - 10','Uniformity of Cell Size: 1 - 10','Uniformity of Cell Shape: 1 - 10','Marginal Adhesion: 1 - 10','Single Epithelial Cell Size: 1 - 10','Bare Nuclei: 1 - 10','Bland Chromatin: 1 - 10','Normal Nucleoli: 1 - 10','Mitoses: 1 - 10','Class: (2 for benign, 4 for malignant)'])
tdf.shape
( 699 , 11)
您可以在读取 csv 文件时指定列的名称
import pandas as pd
tdf = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data', sep = ',', names=['Sample code number: id number','Clump Thickness: 1 - 10','Uniformity of Cell Size: 1 - 10','Uniformity of Cell Shape: 1 - 10','Marginal Adhesion: 1 - 10','Single Epithelial Cell Size: 1 - 10','Bare Nuclei: 1 - 10','Bland Chromatin: 1 - 10','Normal Nucleoli: 1 - 10','Mitoses: 1 - 10','Class: (2 for benign, 4 for malignant)'])
您可以使用检查数据框
tdf.head()
你得到

您可以在https://gist.github.com/e94b31914dbaebda7d11f6bfe0cfbdec上查看代码