我正在尝试构建一个深度神经网络来学习两个矩阵的坐标坐标按位异或,但它的性能很差。
例如,在 2 位的情况下,其精度保持在 0.5 左右。这是代码片段:
from keras.layers import Dense, Activation
from keras.layers import Input
import numpy as np
from keras.layers.merge import concatenate
from keras.models import Model
size=1
data1 = np.random.choice([0, 1], size=(50000,size,size))
data2 = np.random.choice([0, 1], size=(50000,size,size))
labels = np.bitwise_xor(data1, data2)
a = Input(shape=(size,size))
b = Input(shape=(size,size))
a1 = Dense(size, activation='sigmoid')(a)
b1 = Dense(size, activation='sigmoid')(b)
merged = concatenate([a1, b1])
hidden = Dense(1, activation='sigmoid')(merged)
hidden = Dense(3, activation='sigmoid')(hidden)
hidden = Dense(5, activation='relu')(hidden)
hidden = Dense(4, activation='sigmoid')(hidden)
hidden = Dense(3, activation='sigmoid')(hidden)
outputs = Dense(1, activation='relu')(hidden)
model = Model(inputs=[a, b], outputs=outputs)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit([data1, data2], np.array(labels), epochs=15, batch_size=32)
这里发生了什么?
Epoch 1/15
50000/50000 [==============================] - 7s 130us/step - loss: 0.7118 - acc: 0.5044
Epoch 2/15
50000/50000 [==============================] - 4s 78us/step - loss: 0.6933 - acc: 0.5023
Epoch 3/15
50000/50000 [==============================] - 4s 74us/step - loss: 0.6934 - acc: 0.5030
Epoch 4/15
50000/50000 [==============================] - 4s 86us/step - loss: 0.6935 - acc: 0.5002
Epoch 5/15
50000/50000 [==============================] - 4s 79us/step - loss: 0.6934 - acc: 0.5015
Epoch 6/15
50000/50000 [==============================] - 5s 96us/step - loss: 0.6935 - acc: 0.5030
Epoch 7/15
50000/50000 [==============================] - 5s 105us/step - loss: 0.6934 - acc: 0.5026