有人可以解释为什么增加交叉验证中的折叠数会增加每个折叠中分数的变化(或标准偏差)。
我已经记录了下面的数据。我正在研究泰坦尼克号数据集,大约有 800 个实例。我正在使用 StratifiedKFold 和准确度评分指标。
我认为添加更多数据会减少方差 - 所以如果我的理解是正确的,添加更多折叠会增加提供给每个拟合的数据量吗?但似乎通过的折叠越多和越少,标准偏差越低(但每个 CV 的平均准确度保持不变)
{5: {'Mean': 0.8136965664427847, 'Std': 0.015594305964595902},
15: {'Mean': 0.8239359698681732, 'Std': 0.0394725492730379},
25: {'Mean': 0.823968253968254, 'Std': 0.07380525674642965},
35: {'Mean': 0.8284835164835165, 'Std': 0.08302266965043076},
45: {'Mean': 0.8207602339181288, 'Std': 0.09361950295425485},
55: {'Mean': 0.8243315508021392, 'Std': 0.08561359961087428},
65: {'Mean': 0.8273034657650041, 'Std': 0.10483277787806128},
75: {'Mean': 0.8274747474747474, 'Std': 0.11745811393744522},
85: {'Mean': 0.8240641711229945, 'Std': 0.12444299530668741},
95: {'Mean': 0.8305263157894738, 'Std': 0.12484655607120225},
105: {'Mean': 0.8243386243386243, 'Std': 0.1399822172135676},
115: {'Mean': 0.8240683229813665, 'Std': 0.12916193497823075},
125: {'Mean': 0.8249999999999998, 'Std': 0.13334396216138908},
135: {'Mean': 0.8306878306878307, 'Std': 0.15391278842405914},
145: {'Mean': 0.8272577996715927, 'Std': 0.1552827992878498},
155: {'Mean': 0.8240860215053764, 'Std': 0.16756897617377703},
165: {'Mean': 0.8270707070707071, 'Std': 0.16212344628562209},
175: {'Mean': 0.824, 'Std': 0.16293498557341674},
185: {'Mean': 0.8278378378378377, 'Std': 0.1664272446370702},
195: {'Mean': 0.8284615384615385, 'Std': 0.17533175091718106},
205: {'Mean': 0.8265853658536585, 'Std': 0.185808841661263},
215: {'Mean': 0.8265116279069767, 'Std': 0.188431515175417},
225: {'Mean': 0.8288888888888889, 'Std': 0.17685175489623095},
235: {'Mean': 0.8294326241134752, 'Std': 0.19467536066874633},
245: {'Mean': 0.8231292517006802, 'Std': 0.2009280149561644},
255: {'Mean': 0.823202614379085, 'Std': 0.20790684270535614},
265: {'Mean': 0.8254716981132075, 'Std': 0.2109826210610222},
275: {'Mean': 0.8254545454545454, 'Std': 0.2144726806895627},
285: {'Mean': 0.8242690058479532, 'Std': 0.2182928219064767},
295: {'Mean': 0.823728813559322, 'Std': 0.22096355056065273}}

