我有一个测试数据集和训练数据集,如下所示。我提供了带有最少记录的样本数据,但我的数据有超过 1000 条记录。如果您看到这里E
是我需要使用算法预测的目标变量。它只有四个类别,如 1、2、3、4。它只能采用这些值中的任何一个。
训练数据集:
A B C D E
1 20 30 1 1
2 22 12 33 2
3 45 65 77 3
12 43 55 65 4
11 25 30 1 1
22 23 19 31 2
31 41 11 70 3
1 48 23 60 4
测试数据集:
A B C D E
11 21 12 11
1 2 3 4
5 6 7 8
99 87 65 34
11 21 24 12
由于E
只有 4 个类别,我想使用多项逻辑回归(1 vs Rest Logic)来预测这一点。我正在尝试使用 Python 来实现它。
我知道我们需要在变量中设置这些目标并使用算法来预测这些值中的任何一个的逻辑:
output = [1,2,3,4]
但是我被困在如何使用python(sklearn)循环这些值以及我应该使用什么算法来预测输出值?任何帮助将不胜感激。