我的代码如下:
# define a simple CNN model
def baseline_model():
# create model
model = Sequential()
model.add(Conv2D(30, (5, 5), input_shape=(1, 28, 28), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(15, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# build the model
model = baseline_model()
# Fit the model
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=500, batch_size=200)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
我的 Mac 容量:
Grphics Radeon Pro 555 2048 MB
Intel HD Graphics 630 1536 MB
Memeory 16 GB 2133 MHz LPDDR3
Processor 2.8 GHz Intel Core i7
在我的计算机上训练这个 MNIST 图像分类数据集需要几个小时。这是正常的吗?