我会尝试与此类似的现场方法。
每个滑块将收回所有滑块
力按距离 ^2 缩放,就像它们都具有相同极性的电荷或彼此之间连接的弹簧。
最重要的是添加按速度缩放的摩擦
空气v^2
还是液体并不重要v^3
实现运动学约束
对于水平和垂直滑动,它应该很容易。
做物理模拟,等待收敛到稳定状态 v=~0
如果达到局部最小/最大摇动整个事物或随机排列整个事物并重试。您也可以这样做以获得另一种解决方案。
[Edit4] C++ 求解器示例
表示滑块系统的结构/类
为了简化以后的代码,我将不支持闭环或双锚定。这就是为什么 i1 滑块(最右边)没有固定在任何东西上(只会提供力场)。我最终得到了这个滑块定义:
查看来源以class _slider
获取更多信息。
使成为
Dash-dash 表示固定滑块。银色是水平的,aqua 是垂直的,黄色是鼠标选择的。可能稍后在红色上意味着某种错误/卡住或出于调试目的的东西。对于力场求解器,我有时会将场强添加为红蓝比例,但不确定我是否会在这里实现它。
为了保持这个简单,我不会实现缩放/平移功能,因为您的尺寸便于直接渲染而无需转换。
实施初始设置
sliders sys;
int i0,i1,a0,a1,a2,a3,a4,b1,b2,b3,b4,b5;
sys.slider_beg();//ia,ib, x, y, a0, a1, b0, b1,_horizontal
i0=sys.slider_add(-1,-1, 25.0, 25.0, -5.0, 405.0, 0.0, 0.0, 0);
a0=sys.slider_add(i0,-1, 0.0, 0.0, 0.0, 400.0, 0.0, 0.0, 1);
a1=sys.slider_add(i0,-1, 0.0,100.0, 0.0, 400.0, 0.0, 0.0, 1);
a2=sys.slider_add(i0,-1, 0.0,200.0, 0.0, 400.0, 0.0, 0.0, 1);
a3=sys.slider_add(i0,-1, 0.0,300.0, 0.0, 400.0, 0.0, 0.0, 1);
a4=sys.slider_add(i0,-1, 0.0,400.0, 0.0, 400.0, 0.0, 0.0, 1);
b1=sys.slider_add(a0,a2, 20.0, 0.0, 0.0, 125.0, 125.0, 250.0, 0);
b2=sys.slider_add(a3,-1, 40.0, 0.0, -70.0, 30.0, 0.0, 0.0, 0);
b3=sys.slider_add(a1,-1, 60.0, 0.0, -70.0, 30.0, 0.0, 0.0, 0);
b4=sys.slider_add(a2,-1, 80.0, 0.0, -30.0, 70.0, 0.0, 0.0, 0);
b5=sys.slider_add(a3,a1,100.0, 0.0,-125.0, 0.0,-125.0,-250.0, 0);
i1=sys.slider_add(-1,-1,425.0, 25.0, -5.0, 405.0, 0.0, 0.0, 0);
sys.slider_end();
ia
父索引和ib
子索引在哪里(滑块类本身ib
作为父类保存,但这会使 init 感到困惑,因为您需要链接到尚不存在的项目,以便ib
在sys.add
函数中处理转换)。sys
是包含整个内容的类,sys.add
只需向其添加新滑块并返回其从零开始计数的索引。的x,y
是父的相对位置。
为了减轻编码量,此设置不得与约束冲突。此设置的概述在上一个项目符号中。
请注意,垂直滑块的顺序必须从左到右,水平滑块从上到下,以确保正确的约束功能。
鼠标交互
只是用于调试和调整初始设置值的简单滑块移动。和或处理卡住的情况。您需要处理鼠标事件,如果尚未编辑,请选择最近的滑块。如果按下鼠标按钮,将选定的滑块移动到鼠标位置...
物理约束/相互作用
我稍微简化了这一点,所以我刚刚创建了一个谓词函数,该函数为指定的滑块调用,如果它或其任何子/锚与定义的约束冲突,它就会返回。这更容易编码和调试,然后更新位置以匹配实际约束。
用法是多一点代码。首先存储更新滑块的实际位置。然后将滑块更新到新的位置/状态。之后,如果不满足约束,则停止实际滑块速度并恢复其原始位置。
它会慢一点,但我懒得编写完整的约束更新程序(该代码可能会变得非常复杂......)。
我认识到平行和垂直的 2 个相互作用。平行线是直截了当的。但是垂直是滑块边缘与其附近的垂直滑块之间的相互作用,不包括初始状态期间已经相交的滑块(a,b 锚定或刚刚交叉)。因此,我ic
在开始时创建了一个相交滑块 ( )列表,此交互将忽略该列表。
物理模拟
非相对论速度的简单牛顿 - D'Alembert 物理学就可以了。只是在每次迭代时将加速度ax,ay
设置为场强和摩擦力。
场解算器
这是一组规则/方程,用于为每个滑块设置模拟加速度以收敛到解决方案。我最终得到了静电收缩力F = -Q/r^2
和速度的线性阻尼。还实施了绝对速度和加速度限制器以避免数字问题。
为了提高求解时间和稳定性,我添加了精确控制模式,当滑块的整体最大速度降低时,电荷也在降低。
这里是完整的C++/VCL类代码:
//---------------------------------------------------------------------------
//--- Sliders solver ver: 1.01 ----------------------------------------------
//---------------------------------------------------------------------------
#ifndef _sliders_h
#define _sliders_h
//---------------------------------------------------------------------------
#include <math.h>
#include "list.h" // linear dynamic array template List<T> similar to std::vector
//---------------------------------------------------------------------------
const double _slider_w = 3.00; // [px] slider half width (for rendering)
const double _slider_gap = 4.00; // [px] min gap between sliders (for colisions)
const double _acc_limit= 100.00; // [px/s^2]
const double _vel_limit= 100.00; // [px/s]
const double _friction = 0.90; // [-]
const double _charge =250000.00; // [px^3/s^2]
//---------------------------------------------------------------------------
class _slider // one slider (helper class)
{
public:
// properties
double x,y; // actual relative pos
bool _horizontal; // orientation
double a0,a1; // slider vertexes 0 is anchor point
double b0,b1; // anchor zone for another slider
int ia; // -1 for fixed or index of parrent slider
int ib; // -1 or index of parrent slider
// computed
List<int> ic; // list of slider indexes to ignore for perpendicular constraints
double a,b; // force field affected part
double X,Y; // actual absolute position
double vx,vy,ax,ay; // actual relative vel,acc
// temp
int flag; // temp flag for simulation
double x0,x1; // temp variables for solver
// constructors (can ignore this)
_slider() {}
_slider(_slider& a) { *this=a; }
~_slider() {}
_slider* operator = (const _slider *a) { *this=*a; return this; }
//_slider* operator = (const _slider &a) { ...copy... return this; }
};
//---------------------------------------------------------------------------
class sliders // whole slider system main class
{
public:
List<_slider> slider; // list of sliders
double vel_max; // max abs velocity of sliders for solver precision control
double charge; // actual charge of sliders for solve()
int mode; // actual solution precision control mode
// constructors (can ignore this)
sliders();
sliders(sliders& a) { *this=a; }
~sliders() {}
sliders* operator = (const sliders *a) { *this=*a; return this; }
//sliders* operator = (const sliders &a) { ...copy... return this; }
// VCL window API variables (can ignore this)
double mx0,my0,mx1,my1; // last and actual mouse position
TShiftState sh0,sh1; // last and actual mouse buttons and control keys state
int sel;
// API (this is important stuff)
void slider_beg(){ slider.num=0; } // clear slider list
int slider_add(int ia,int ib,double x,double y,double a0,double a1,double b0,double b1,bool _h); // add slider to list
void slider_end(); // compute slider parameters
bool constraints(int ix); // return true if constraints hit
void positions(); // recompute absolute positions
void update(double dt); // update physics simulation with time step dt [sec]
void solve(bool _init=false); // set sliders accelerations to solve this
void stop(); // stop all movements
// VCL window API for interaction with GUI (can ignore this)
void mouse(int x,int y,TShiftState sh);
void draw(TCanvas *scr);
};
//---------------------------------------------------------------------------
sliders::sliders()
{
mx0=0.0; my0=0.0;
mx1=0.0; my1=0.0;
sel=-1;
}
//---------------------------------------------------------------------------
int sliders::slider_add(int ia,int ib,double x,double y,double a0,double a1,double b0,double b1,bool _h)
{
_slider s; double q;
if (a0>a1) { q=a0; a0=a1; a1=q; }
if (b0>b1) { q=b0; b0=b1; b1=q; }
s.x=x; s.vx=0.0; s.ax=0.0;
s.y=y; s.vy=0.0; s.ay=0.0;
s.ia=ia; s.a0=a0; s.a1=a1;
s.ib=-1; s.b0=b0; s.b1=b1;
s.ic.num=0;
if ((ib>=0)&&(ib<slider.num)) slider[ib].ib=slider.num;
s._horizontal=_h;
s.a=a0; // min
if (s.a>a1) s.a=a1;
if (s.a>b0) s.a=b0;
if (s.a>b1) s.a=b1;
s.b=a0; // max
if (s.b<a1) s.b=a1;
if (s.b<b0) s.b=b0;
if (s.b<b1) s.b=b1;
slider.add(s);
return slider.num-1;
}
//---------------------------------------------------------------------------
void sliders::slider_end()
{
int i,j;
double a0,a1,b0,b1,x0,x1,w=_slider_gap;
_slider *si,*sj;
positions();
// detect intersecting sliders and add them to propriet ic ignore list
for (si=slider.dat,i=0;i<slider.num;i++,si++)
for (sj=si+1 ,j=i+1;j<slider.num;j++,sj++)
if (si->_horizontal!=sj->_horizontal)
{
if (si->_horizontal)
{
a0=si->X+si->a; a1=sj->X-w;
b0=si->X+si->b; b1=sj->X+w;
x0=si->Y; x1=sj->Y;
}
else{
a0=si->Y+si->a; a1=sj->Y-w;
b0=si->Y+si->b; b1=sj->Y+w;
x0=si->X; x1=sj->X;
}
if (((a0<=b1)&&(b0>=a1))||((a1<=b0)&&(b1>=a0)))
if ((x0>x1+sj->a-w)&&(x0<x1+sj->b+w))
{
si->ic.add(j);
sj->ic.add(i);
}
}
}
//---------------------------------------------------------------------------
bool sliders::constraints(int ix)
{
int i,j;
double a0,a1,b0,b1,x0,x1,x,w=_slider_gap;
_slider *si,*sj,*sa,*sb,*s;
s=slider.dat+ix;
// check parallel neighbors overlapp
for (si=slider.dat,i=0;i<slider.num;i++,si++)
if ((i!=ix)&&(si->_horizontal==s->_horizontal))
{
if (s->_horizontal)
{
a0=s->X+s->a; a1=si->X+si->a;
b0=s->X+s->b; b1=si->X+si->b;
x0=s->Y; x1=si->Y;
}
else{
a0=s->Y+s->a; a1=si->Y+si->a;
b0=s->Y+s->b; b1=si->Y+si->b;
x0=s->X; x1=si->X;
}
if (((a0<=b1)&&(b0>=a1))||((a1<=b0)&&(b1>=a0)))
{
if ((i<ix)&&(x0<x1+w)) return true;
if ((i>ix)&&(x0>x1-w)) return true;
}
}
// check perpendicular neighbors overlapp
for (si=slider.dat,i=0;i<slider.num;i++,si++)
if ((i!=ix)&&(si->_horizontal!=s->_horizontal))
{
// skip ignored sliders for this
for (j=0;j<s->ic.num;j++)
if (s->ic[j]==i) { j=-1; break; }
if (j<0) continue;
if (s->_horizontal)
{
a0=s->X+s->a; a1=si->X-w;
b0=s->X+s->b; b1=si->X+w;
x0=s->Y; x1=si->Y;
}
else{
a0=s->Y+s->a; a1=si->Y-w;
b0=s->Y+s->b; b1=si->Y+w;
x0=s->X; x1=si->X;
}
if (((a0<=b1)&&(b0>=a1))||((a1<=b0)&&(b1>=a0)))
if ((x0>x1+si->a-w)&&(x0<x1+si->b+w))
return true;
}
// conflict a anchor area of parent?
if (s->ia>=0)
{
si=slider.dat+s->ia;
if (s->_horizontal)
{
x0=si->Y+si->a0;
x1=si->Y+si->a1;
x=s->Y;
}
else{
x0=si->X+si->a0;
x1=si->X+si->a1;
x=s->X;
}
if (x<x0+w) return true;
if (x>x1-w) return true;
}
// conflict b anchor area of parent?
if (s->ib>=0)
{
si=slider.dat+s->ib;
if (si->_horizontal)
{
x0=si->X+si->b0;
x1=si->X+si->b1;
x=s->X;
}
else{
x0=si->Y+si->b0;
x1=si->Y+si->b1;
x=s->Y;
}
if (x<x0+w) return true;
if (x>x1-w) return true;
}
// conflict b anchor area with childs?
for (si=slider.dat,i=0;i<slider.num;i++,si++)
if ((i!=ix)&&(si->ib==ix))
{
if (s->_horizontal)
{
x0=s->X+s->b0;
x1=s->X+s->b1;
x=si->X;
}
else{
x0=s->Y+s->b0;
x1=s->Y+s->b1;
x=si->Y;
}
if (x<x0+w) return true;
if (x>x1-w) return true;
}
// check childs too
for (si=slider.dat,i=0;i<slider.num;i++,si++)
if ((i!=ix)&&(si->ia==ix))
if (constraints(i)) return true;
return false;
}
//---------------------------------------------------------------------------
void sliders::positions()
{
int i,e;
_slider *si,*sa;
// set flag = uncomputed
for (si=slider.dat,i=0;i<slider.num;i++,si++) si->flag=0;
// iterate until all sliders are computed
for (e=1;e;)
for (e=0,si=slider.dat,i=0;i<slider.num;i++,si++)
if (!si->flag)
{
// fixed
if (si->ia<0)
{
si->X=si->x;
si->Y=si->y;
si->flag=1;
continue;
}
// a anchored
sa=slider.dat+si->ia;
if (sa->flag)
{
si->X=sa->X+si->x;
si->Y=sa->Y+si->y;
si->flag=1;
continue;
}
e=1; // not finished yet
}
}
//---------------------------------------------------------------------------
void sliders::update(double dt)
{
int i;
_slider *si,*sa;
double x,X;
// D'Lamnbert integration
for (si=slider.dat,i=0;i<slider.num;i++,si++)
if (si->_horizontal)
{
x=si->y; si->vy+=si->ay*dt; // vel = Integral(acc*dt)
si->vy*=_friction; // friction k*vel
X=si->Y; si->y +=si->vy*dt; // pos = Integral(vel*dt)
positions(); // recompute childs
if ((si->ia<0)||(constraints(i))) // if fixed or constraint hit (stop and restore original position)
{
si->vy=0.0;
si->y =x;
si->Y =X;
positions(); // recompute childs
}
}
else{
x=si->x; si->vx+=si->ax*dt; // vel = Integral(acc*dt)
si->vx*=_friction; // friction k*vel
X=si->X; si->x +=si->vx*dt; // pos = Integral(vel*dt)
positions(); // recompute childs
if ((si->ia<0)||(constraints(i))) // if fixed or constraint hit (stop and restore original position)
{
si->vx=0.0;
si->x =x;
si->X =X;
positions(); // recompute childs
}
}
}
//---------------------------------------------------------------------------
void sliders::solve(bool _init)
{
int i,j,k;
double a0,a1,b0,b1,x0,x1;
_slider *si,*sj,*sa;
// init solution
if (_init)
{
mode=0;
charge=_charge;
}
// clear accelerations and compute actual max velocity
vel_max=0.0;
for (si=slider.dat,i=0;i<slider.num;i++,si++)
{
si->ax=0.0;
si->ay=0.0;
x0=fabs(si->vx); if (vel_max<x0) vel_max=x0;
x0=fabs(si->vy); if (vel_max<x0) vel_max=x0;
}
// precision control of solver
if ((mode==0)&&(vel_max>25.0)) { mode++; } // wait until speed raises
if ((mode==1)&&(vel_max<10.0)) { mode++; charge*=0.10; } // scale down forces to lower jitter
if ((mode==2)&&(vel_max< 1.0)) { mode++; charge*=0.10; } // scale down forces to lower jitter
if ((mode==3)&&(vel_max< 0.1)) { mode++; charge =0.00; stop(); } // solution found
// set x0 as 1D vector to closest parallel neighbor before and x1 after
for (si=slider.dat,i=0;i<slider.num;i++,si++) { si->x0=0.0; si->x1=0.0; }
for (si=slider.dat,i=0;i<slider.num;i++,si++)
for (sj=si+1 ,j=i+1;j<slider.num;j++,sj++)
if (si->_horizontal==sj->_horizontal)
{
// longer side interaction
if (si->_horizontal)
{
a0=si->X+si->a; a1=sj->X+sj->a;
b0=si->X+si->b; b1=sj->X+sj->b;
x0=si->Y; x1=sj->Y;
}
else{
a0=si->Y+si->a; a1=sj->Y+sj->a;
b0=si->Y+si->b; b1=sj->Y+sj->b;
x0=si->X; x1=sj->X;
}
if (((a0<=b1)&&(b0>=a1))||((a1<=b0)&&(b1>=a0)))
{
x0=x1-x0;
if ((si->ia>=0)&&(x0<0.0)&&((fabs(si->x0)<_slider_gap)||(fabs(si->x0)>fabs(x0)))) si->x0=-x0;
if ((si->ia>=0)&&(x0>0.0)&&((fabs(si->x1)<_slider_gap)||(fabs(si->x1)>fabs(x0)))) si->x1=-x0;
if ((sj->ia>=0)&&(x0<0.0)&&((fabs(sj->x0)<_slider_gap)||(fabs(sj->x0)>fabs(x0)))) sj->x0=+x0;
if ((sj->ia>=0)&&(x0>0.0)&&((fabs(sj->x1)<_slider_gap)||(fabs(sj->x1)>fabs(x0)))) sj->x1=+x0;
}
// shorter side interaction
if (si->_horizontal)
{
a0=si->Y-_slider_gap; a1=sj->Y+_slider_gap;
b0=si->Y+_slider_gap; b1=sj->Y+_slider_gap;
x0=si->X; x1=sj->X;
}
else{
a0=si->X-_slider_gap; a1=sj->X+_slider_gap;
b0=si->X+_slider_gap; b1=sj->X+_slider_gap;
x0=si->Y; x1=sj->Y;
}
if (((a0<=b1)&&(b0>=a1))||((a1<=b0)&&(b1>=a0)))
{
if (x0<x1) { x0+=si->b; x1+=sj->a; }
else { x0+=si->a; x1+=sj->b; }
x0=x1-x0;
if (si->ia>=0)
{
sa=slider.dat+si->ia;
if ((sa->ia>=0)&&(x0<0.0)&&((fabs(sa->x0)<_slider_gap)||(fabs(sa->x0)>fabs(x0)))) sa->x0=-x0;
if ((sa->ia>=0)&&(x0>0.0)&&((fabs(sa->x1)<_slider_gap)||(fabs(sa->x1)>fabs(x0)))) sa->x1=-x0;
}
if (sj->ia>=0)
{
sa=slider.dat+sj->ia;
if ((sa->ia>=0)&&(x0<0.0)&&((fabs(sa->x0)<_slider_gap)||(fabs(sa->x0)>fabs(x0)))) sa->x0=+x0;
if ((sa->ia>=0)&&(x0>0.0)&&((fabs(sa->x1)<_slider_gap)||(fabs(sa->x1)>fabs(x0)))) sa->x1=+x0;
}
}
}
// set x0 as 1D vector to closest perpendicular neighbor before and x1 after
for (si=slider.dat,i=0;i<slider.num;i++,si++)
for (sj=si+1 ,j=i+1;j<slider.num;j++,sj++)
if (si->_horizontal!=sj->_horizontal)
{
// skip ignored sliders for this
for (k=0;k<si->ic.num;k++)
if (si->ic[k]==j) { k=-1; break; }
if (k<0) continue;
if (si->_horizontal)
{
a0=si->X+si->a; a1=sj->X-_slider_w;
b0=si->X+si->b; b1=sj->X+_slider_w;
x0=si->Y;
}
else{
a0=si->Y+si->a; a1=sj->Y-_slider_w;
b0=si->Y+si->b; b1=sj->Y+_slider_w;
x0=si->X;
}
if (((a0<=b1)&&(b0>=a1))||((a1<=b0)&&(b1>=a0)))
{
if (si->_horizontal)
{
a1=sj->Y+sj->a;
b1=sj->Y+sj->b;
}
else{
a1=sj->X+sj->a;
b1=sj->X+sj->b;
}
a1-=x0; b1-=x0;
if (fabs(a1)<fabs(b1)) x0=-a1; else x0=-b1;
if ((si->ia>=0)&&(x0<0.0)&&((fabs(si->x0)<_slider_gap)||(fabs(si->x0)>fabs(x0)))) si->x0=+x0;
if ((si->ia>=0)&&(x0>0.0)&&((fabs(si->x1)<_slider_gap)||(fabs(si->x1)>fabs(x0)))) si->x1=+x0;
if (sj->ia<0) continue;
sa=slider.dat+sj->ia;
if ((sa->ia>=0)&&(x0<0.0)&&((fabs(sa->x0)<_slider_gap)||(fabs(sa->x0)>fabs(x0)))) sa->x0=-x0;
if ((sa->ia>=0)&&(x0>0.0)&&((fabs(sa->x1)<_slider_gap)||(fabs(sa->x1)>fabs(x0)))) sa->x1=-x0;
}
}
// convert x0,x1 distances to acceleration
for (si=slider.dat,i=0;i<slider.num;i++,si++)
{
// driving force F = ~ Q / r^2
if (fabs(si->x0)>1e-10) x0=charge/(si->x0*si->x0); else x0=0.0; if (si->x0<0.0) x0=-x0;
if (fabs(si->x1)>1e-10) x1=charge/(si->x1*si->x1); else x1=0.0; if (si->x1<0.0) x1=-x1;
a0=x0+x1;
// limit acc
if (a0<-_acc_limit) a0=-_acc_limit;
if (a0>+_acc_limit) a0=+_acc_limit;
// store parallel acc to correct axis
if (si->_horizontal) si->ay=a0;
else si->ax=a0;
// limit vel (+/- one iteration overlap)
if (si->_horizontal) x0=si->vy;
else x0=si->vx;
if (x0<-_vel_limit) x0=-_vel_limit;
if (x0>+_vel_limit) x0=+_vel_limit;
if (si->_horizontal) si->vy=x0;
else si->vx=x0;
}
}
//---------------------------------------------------------------------------
void sliders::stop()
{
int i;
_slider *si;
for (si=slider.dat,i=0;i<slider.num;i++,si++)
{
si->vx=0.0;
si->vy=0.0;
si->ax=0.0;
si->ay=0.0;
}
}
//---------------------------------------------------------------------------
void sliders::mouse(int x,int y,TShiftState sh)
{
int i,q0,q1;
double d,dd;
_slider *si;
// update mouse state
mx0=mx1; my0=my1; sh0=sh1;
mx1=x; my1=y; sh1=sh;
// slider movement with left mouse button
q0=sh0.Contains(ssLeft);
q1=sh1.Contains(ssLeft);
if ((sel>=0)&&(q1))
{
si=slider.dat+sel;
// stop simulation for selected slider
si->vx=0.0;
si->vy=0.0;
si->ax=0.0;
si->ay=0.0;
// use mouse position instead
if (si->ia>=0)
{
if (si->_horizontal){ d=si->y; dd=si->Y; si->y+=my1-si->Y; si->Y=my1; si->vy=0.0; si->ay=0.0; positions(); if (constraints(sel)) { si->y=d; si->Y=dd; positions(); }}
else { d=si->x; dd=si->X; si->x+=mx1-si->X; si->X=mx1; si->vx=0.0; si->ax=0.0; positions(); if (constraints(sel)) { si->x=d; si->X=dd; positions(); }}
}
}
// select slider (if not left mouse button used)
if (!q1)
for (sel=-1,d=_slider_w+1.0,si=slider.dat,i=0;i<slider.num;i++,si++)
{
dd=_slider_w+1.0;
if (si->_horizontal){ if ((mx1>=si->X+si->a)&&(mx1<=si->X+si->b)) dd=fabs(my1-si->Y); }
else { if ((my1>=si->Y+si->a)&&(my1<=si->Y+si->b)) dd=fabs(mx1-si->X); }
if ((dd<d)&&(dd<=_slider_w)) { sel=i; d=dd; }
}
}
//---------------------------------------------------------------------------
void sliders::draw(TCanvas *scr)
{
int i,j,n;
double w=_slider_w,r,x,y,a0,a1;
AnsiString txt;
_slider *s;
scr->Brush->Style=bsClear;
#define _line(aa,bb) \
if (s->_horizontal) \
{ \
scr->MoveTo(s->X+aa,s->Y); \
scr->LineTo(s->X+bb,s->Y); \
} \
else{ \
scr->MoveTo(s->X,s->Y+aa); \
scr->LineTo(s->X,s->Y+bb); \
}
scr->Pen->Color=clSilver;
scr->Font->Color=clWhite;
scr->TextOutA(40,40,AnsiString().sprintf("mode %i",mode));
scr->TextOutA(40,60,AnsiString().sprintf("vel: %.3lf [px/s]",vel_max));
scr->TextOutA(40,80,AnsiString().sprintf(" Q: %.3lf [px^3/s^2]",charge));
scr->Font->Color=clYellow;
for (s=slider.dat,i=0;i<slider.num;i++,s++)
{
if (s->_horizontal) scr->Pen->Color=clSilver;
else scr->Pen->Color=clAqua;
if (i==sel)
{
scr->Pen->Color=clYellow;
txt=AnsiString().sprintf(" ix:%i ia:%i ib:%i ic:",sel,s->ia,s->ib);
for (j=0;j<=s->ic.num;j++) txt+=AnsiString().sprintf(" %i",s->ic[j]);
scr->TextOutA(40,100,txt);
scr->TextOutA(40,120,AnsiString().sprintf("pos: %.1lf %.1lf [px]",s->X,s->Y));
scr->TextOutA(40,140,AnsiString().sprintf("vel: %.3lf %.3lf [px/s]",s->vx,s->vy));
scr->TextOutA(40,160,AnsiString().sprintf("acc: %.3lf %.3lf [px/s^2]",s->ax,s->ay));
scr->Pen->Color=clYellow;
}
if (s->ia<0) scr->Pen->Style=psDash;
else scr->Pen->Style=psSolid;
// a anchor loop
x=s->X;
y=s->Y;
if (s->ia>=0) scr->Ellipse(x-w,y-w,x+w,y+w);
// b anchor loop
r=0.5*fabs(s->b1-s->b0);
if (s->_horizontal)
{
x=s->X+0.5*(s->b0+s->b1);
y=s->Y;
scr->RoundRect(x-r,y-w,x+r,y+w,w,w);
}
else{
x=s->X;
y=s->Y+0.5*(s->b0+s->b1);
scr->RoundRect(x-w,y-r,x+w,y+r,w,w);
}
// a line cutted by a anchor loop
a0=s->a0; a1=s->a1;
if ((s->ia>=0)&&(a0<=+w)&&(a1>=-w))
{
if (a0<-w) _line(s->a0,-w);
if (a1>+w) _line( w,s->a1);
}
else _line(s->a0,s->a1);
}
scr->Font->Color=clDkGray;
scr->Pen->Style=psSolid;
scr->Brush->Style=bsSolid;
#undef _line
}
//---------------------------------------------------------------------------
#endif
//---------------------------------------------------------------------------
你可以忽略 VCL 的东西,它只是用于与我的应用程序窗口和渲染交互的 API。求解器本身不需要它的任何东西。我使用了我的动态线性阵列模板,List<T>
所以这里有一些解释:
List<double> xxx;
是相同的 double xxx[];
xxx.add(5);
添加5
到列表末尾
xxx[7]
访问数组元素(安全)
xxx.dat[7]
访问数组元素(不安全但快速的直接访问)
xxx.num
是数组的实际使用大小
xxx.reset()
清除数组并设置 xxx.num=0
xxx.allocate(100)
为100
项目预先分配空间
从第 3 项子弹进行适当的初始化后,用法很简单,如下所示:
sys.solve(true);
for (;;)
{
sys.solve();
sys.update(0.040); // just time step
if (sys.mode==4) break; // stop if solution found or stuck
}
而不是循环,我在计时器中调用它并重绘窗口,以便我看到动画:
不稳定是由于非统一的GIF抓取采样率(不规则地从模拟中跳过一些帧)。
您可以使用vel,acc
限制、阻尼系数和模式控制if
s的常量来改变行为。如果你也实现了鼠标处理程序,那么你可以用鼠标左键移动滑块,这样你就可以摆脱卡住的情况......
这里是独立的 Win32 演示(用BDS2006 C++ 编译)。
- 演示单击大洋红色按钮下方的慢速下载,输入 4 个字母的字母数字代码即可开始下载,无需注册。
有关求解器力计算如何工作的更多信息,请参阅相关/后续 QA: