给定值,让
问题是:
我用有纪律的凸-基于 CVXPY 的凹面编程和DCCP 封装。代码如下:
import cvxpy as cp
import numpy as np
import dccp
from dccp.problem import is_dccp
# Generate data.
m = 20
n = 15
np.random.seed(1)
X = np.random.randn(m, n)
Y = np.random.randn(m)
# Define and solve the DCCP problem.
def loss_fn(X, Y, beta):
return cp.norm2(cp.matmul(X, beta) - Y)**2
def obj_g(X, Y, beta, sval):
return cp.pos(loss_fn(X, Y, beta) - sval)
beta = cp.Variable(n)
s = 10000000000000
constr = obj_g(X, Y, beta, s)
t = cp.Variable(1)
t.value = [1]
cost = loss_fn(X, Y, beta) - t
problem = cp.Problem(cp.Minimize(cost), [constr >= t])
print("problem is DCP:", problem.is_dcp()) # false
print("problem is DCCP:", is_dccp(problem)) # true
problem.solve(verbose=True, solver=cp.ECOS, method='dccp')
# Print result.
print("\nThe optimal value is", problem.value)
print("The optimal beta is")
print(beta.value)
print("The norm of the residual is ", cp.norm(X*beta - Y, p=2).value)
值很大,我希望得到一个类似于最小二乘估计的解决方案。但是没有解决方案,因为输出显示:
problem is DCP: False
problem is DCCP: True
ECOS 2.0.7 - (C) embotech GmbH, Zurich Switzerland, 2012-15. Web: www.embotech.com/ECOS
It pcost dcost gap pres dres k/t mu step sigma IR | BT
0 +0.000e+00 -0.000e+00 +2e+01 9e-02 1e-04 1e+00 9e+00 --- --- 1 1 - | - -
1 -7.422e-04 +2.695e-09 +2e-01 1e-03 1e-06 1e-02 9e-02 0.9890 1e-04 2 1 1 | 0 0
2 -1.638e-05 +5.963e-11 +2e-03 1e-05 2e-08 1e-04 1e-03 0.9890 1e-04 2 1 1 | 0 0
3 -2.711e-07 +9.888e-13 +2e-05 1e-07 2e-10 2e-06 1e-05 0.9890 1e-04 4 1 1 | 0 0
4 -3.991e-09 +1.379e-14 +2e-07 1e-09 2e-12 2e-08 1e-07 0.9890 1e-04 1 0 0 | 0 0
5 -5.507e-11 +1.872e-16 +3e-09 2e-11 2e-14 2e-10 1e-09 0.9890 1e-04 1 0 0 | 0 0
OPTIMAL (within feastol=1.6e-11, reltol=4.8e+01, abstol=2.6e-09).
Runtime: 0.001112 seconds.
ECOS 2.0.7 - (C) embotech GmbH, Zurich Switzerland, 2012-15. Web: www.embotech.com/ECOS
It pcost dcost gap pres dres k/t mu step sigma IR | BT
0 +0.000e+00 -5.811e-01 +1e+01 6e-01 6e-01 1e+00 2e+00 --- --- 1 1 - | - -
1 -7.758e+00 -2.575e+00 +1e+00 2e-01 7e-01 6e+00 3e-01 0.9890 1e-01 1 1 1 | 0 0
2 -3.104e+02 -9.419e+01 +4e-02 2e-01 8e-01 2e+02 8e-03 0.9725 8e-04 2 1 1 | 0 0
3 -2.409e+03 -9.556e+02 +5e-03 2e-01 8e-01 1e+03 1e-03 0.8968 5e-02 3 2 2 | 0 0
4 -1.103e+04 -5.209e+03 +2e-03 2e-01 7e-01 6e+03 4e-04 0.9347 3e-01 2 2 2 | 0 0
5 -1.268e+04 -1.592e+03 +8e-04 1e-01 1e+00 1e+04 2e-04 0.7916 4e-01 3 2 2 | 0 0
6 -1.236e+05 -2.099e+04 +9e-05 1e-01 1e+00 1e+05 2e-05 0.8979 9e-03 1 1 1 | 0 0
7 -4.261e+05 -1.850e+05 +4e-05 2e-01 7e-01 2e+05 1e-05 0.7182 3e-01 2 1 1 | 0 0
8 -2.492e+07 -1.078e+07 +7e-07 1e-01 7e-01 1e+07 2e-07 0.9838 1e-04 3 2 2 | 0 0
9 -2.226e+08 -9.836e+07 +5e-08 9e-02 5e-01 1e+08 1e-08 0.9339 2e-03 2 3 2 | 0 0
UNBOUNDED (within feastol=1.0e-09).
Runtime: 0.001949 seconds.
The optimal value is None
The optimal beta is
None
The norm of the residual is None