我指的是这篇 论文,并尝试实现混乱的发送者和接收者,以解码消息,如部分中所述混沌信号掩蔽。我要实现的过程是同一篇论文的图 6,其中我们有由方程给出的洛伦兹系统:
[来自维基百科]和对于实际应用,参数已被缩放。
我的 MATLAB 代码在这里给出:
clear all;
close all;
clc;
%Solution for the Lorenz equations in the time interval [0,100] with initial conditions [1,1,1].
sigma=16;
beta=4;
rho=45.6;
f = @(t,a) [-sigma*a(1)/10 + sigma*a(2)/10; rho*a(1)/10 - a(2)/10 - (a(1)*a(3))/200; -beta*a(3)/20 + (a(1)*a(2))/100];
%'f' is the set of differential equations and 'a' is an array containing values of x,y, and z variables.
%'t' is the time variable
[t,a] = ode45(f,[0 10],[1 1 1]);%'ode45' uses adaptive Runge-Kutta method of 4th and 5th order to solve differential equations
% plot3(a(:,1),a(:,2),a(:,3))
m_t= rand(1,size(a,1))<=0.5;
s_t=a(:,1)+ m_t';
f = @(t,a_r) [-sigma*a_r(1)/10 + sigma*a(1)/10; rho*a_r(1)/10 - a(1)/10 - (a_r(1)*a(1))/200; -beta*a(1)/20 + (a_r(1)*a(1))/100];
[t,a_r] = ode45(f,[0 10],[1 1 1]);
m_t_est=s_t(1:size(a_r,1),:)-a_r(:,1);
l=m_t(:,1:size(a_r,1))'-m_t_est;
plot(l)
此代码的一部分取自 Wikipedia: Lorenz system,并进行了适当修改,我的问题是双重的:
对于某些样本来说这很好,但会急剧增加。
我这样做是正确的方式还是真的有问题?