INPUT
x[0] = (0.00 + j 0.00)
x[1] = (1.00 + j 0.00)
x[2] = (2.00 + j 0.00)
x[3] = (3.00 + j 0.00)
x[4] = (4.00 + j 0.00)
x[5] = (5.00 + j 0.00)
x[6] = (6.00 + j 0.00)
x[7] = (7.00 + j 0.00)
x[8] = (8.00 + j 0.00)
x[9] = (9.00 + j 0.00)
x[10] = (0.00 + j 0.00)
x[11] = (0.00 + j 0.00)
x[12] = (0.00 + j 0.00)
x[13] = (0.00 + j 0.00)
x[14] = (0.00 + j 0.00)
x[15] = (0.00 + j 0.00)
FFT:
X[0] = (45.00 + j 0.00)
X[1] = (-25.45 + j 16.67)
X[2] = (10.36 + j -3.29)
X[3] = (-9.06 + j -2.33)
X[4] = (4.00 + j 5.00)
X[5] = (-1.28 + j -5.64)
X[6] = (-2.36 + j 4.71)
X[7] = (3.80 + j -2.65)
X[8] = (-5.00 + j 0.00)
X[9] = (3.80 + j 2.65)
X[10] = (-2.36 + j -4.71)
X[11] = (-1.28 + j 5.64)
X[12] = (4.00 + j -5.00)
X[13] = (-9.06 + j 2.33)
X[14] = (10.36 + j 3.29)
X[15] = (-25.45 + j -16.67)
从上面的 FFT 输出中,我注意到以下内容:
Re(x[1])=Re(x[15]), Im(x[1])=-Im(x[15])
Re(x[2])=Re(x[14]), Im(x[2])=-Im(x[14])
Re(x[3])=Re(x[13]), Im(x[3])=-Im(x[13])
Re(x[4])=Re(x[12]), Im(x[4])=-Im(x[12])
等等
这是一个经过验证的结果
Re(X[n])=Re(x[N-n]), and Im(X[n])=-Im(x[N-n]) for 0<n<N-1, where N is no. of DFT points?
如果是,那么是否有任何特定条件可以证明这是真的?一般化的结果是什么?
如果这是一般规则,那么我可以节省大量内存和算术,因为我只关心 DFT 输出的幅度,而不是相位。