通过算法(通过计算机模拟)与数学学习分布属性的优缺点是什么?
计算机模拟似乎可以成为另一种学习方法,尤其是对于那些在微积分方面感觉不强的新生。
此外,编码模拟似乎可以更早、更直观地掌握分布的概念。
通过算法(通过计算机模拟)与数学学习分布属性的优缺点是什么?
计算机模拟似乎可以成为另一种学习方法,尤其是对于那些在微积分方面感觉不强的新生。
此外,编码模拟似乎可以更早、更直观地掌握分布的概念。
这是我多年来在自己的教学中提出的一个重要问题,不仅涉及分布,还涉及许多其他概率和数学概念。我不知道有任何研究真正针对这个问题,所以以下是基于经验、反思和与同事的讨论。
首先,重要的是要认识到激发学生理解基本数学概念(例如分布及其数学属性)的因素可能取决于很多事情,并且因学生而异。在一般的数学学生中,我发现数学上精确的陈述受到赞赏,过多的拐弯抹角可能会令人困惑和沮丧(嘿,直截了当)。那不是说你不应该使用,例如,计算机模拟。相反,它们可以很好地说明数学概念,而且我知道很多例子,其中关键数学概念的计算插图可以帮助理解,但教学仍然是老式的数学导向。然而,对于数学学生来说,精确的数学是很重要的。
但是,您的问题表明您对数学学生不太感兴趣。如果学生有某种计算重点,那么计算机模拟和算法对于快速了解分布是什么以及它可以具有什么样的属性非常有用。学生需要有很好的编程和可视化工具,我使用 R。这意味着你需要教一些 R(或另一种首选语言),但如果这是课程的一部分,那也没什么大不了的. 如果不期望学生在数学课后进行严格的工作,那么如果他们从算法和模拟中获得大部分理解,我会感到很自在。我就是这样教生物信息学的学生的。
那么对于既不是计算导向也不是数学学生的学生来说,拥有一系列真实且相关的数据集来说明他们所在领域中不同类型的分布是如何发生的可能会更好。例如,如果你向医生教授生存分布,那么引起他们注意的最好方法就是拥有一系列真实的生存数据。对我来说,后续的数学处理还是基于模拟的处理是最好的,这是一个悬而未决的问题。如果您以前没有做过任何编程,那么这样做的实际问题很容易掩盖预期的理解收获。学生最终可能会学习如何编写 if-then-else 语句,但无法将其与现实生活中的分布联系起来。
作为一般评论,我发现用模拟研究的真正重要的一点是分布如何转换。特别是关于测试统计。理解您计算的这个单一数字,例如,从您的整个数据集中的检验统计量与分布有任何关系,这是一个相当大的挑战。即使你对数学非常了解。作为必须处理对微阵列数据进行多次测试的一个奇怪的副作用,实际上向学生展示测试统计的分布如何在现实生活中弹出变得容易得多。