我正在尝试分析足球的数据集:
W_OVER_2_5 PREDICTED MATCH_DATE LEAGUE HOME AWAY MATCH_HOME MATCH_DRAW MATCH_AWAY MATCH_U2_50 MATCH_O2_50
0 0 1105135200 5 260 289 2.05 3.00 4.50 1.65 2.30
0 1 1105308000 16 715 700 2.50 3.30 3.05 1.80 2.14
1 1 1105308000 11 445 479 1.36 5.25 12.00 2.15 1.78
0 1 1105308000 11 453 474 3.00 3.35 2.62 1.75 2.20....
现在,我选择了“最佳估计者”——
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
verbose=1, warm_start=False)
用最好的coefs -
1. -2.40477246e-10
2. -5.57611571e-02
3. -1.32010761e-04
4. 1.51666398e-03
5. 7.54521399e-02
6. 6.38889247e-02
7. -2.25746953e-01
8. -3.79313902e-01
9. 3.70514297e-02
现在,我有一个问题——我应该如何从实际策略的角度来理解 coefs?例如,
If `MATCH_HOME` is min among all [`MATCH_HOME`, `MATCH_DRAW`, `MATCH_WAY`] AND `MATCH_O2_50' = 1
THEN PREDICTED := 1
ELSE PREDICTED := 0
PS。我将非常感谢有关该主题的任何科学论文:)