在 Julia 中使用最小均方 (LMS) 滤波器对线性阵列进行波束形成

信息处理 matlab 自适应滤波器 波束成形 lms 朱莉娅
2022-02-17 09:49:28

我一直在尝试实现一个简单的 LMS 自适应波束成形代码。由于我没有 MATALB 许可证,因此我决定使用 Julia,因为它们非常相似。为了让基本代码正常工作,我实现了 MATLAB 网站上的 MVRD 波束成形示例(我现在似乎找不到链接)。然后我使用链接https://teaandtechtime.com/adaptive-beamforming-with-lms/来启动 LMS。

我现在的代码是

using Plots
using LinearAlgebra

# Source: https://teaandtechtime.com/adaptive-beamforming-with-lms/

M   = 20;        # Number of Array Elements.
N   = 200;       # Number of Signal Samples.
n   = 1:N;       # Time Sample Index Vector.
c   = 3*10^8;    # Speed of light
f   = 2.4*10^9;  # Frequency [Hz]
lambda = c/f;    # Incoming Signal Wavelength in [m].
d = lambda/2;    # Interelement Distance in [m].
SNR    = 20;     # Target SNR in dBs.
phi_s  = 0;      # Target azimuth angle in degrees.
phi_i1 = 20;     # Interference angle in degrees.
phi_i2 = -30;    # Interference angle in degrees.
phi_i3 = 50;     # Interference angle in degrees.
INR1   = 35;     # Interference #1 INR in dBs.
INR2   = 70;     # Interference #2 INR in dBs.
INR3   = 50;     # Interference #3 INR in dBs.

u_s    = (d/lambda)*sin(phi_s*pi/180);   # Normalized Spatial Frequency of the Target signal.
u_int1 = (d/lambda)*sin(phi_i1*pi/180);  # Normalized Spatial Frequency of the Interferer #1.
u_int2 = (d/lambda)*sin(phi_i2*pi/180);  # Normalized Spatial Frequency of the Interferer #2.
u_int3 = (d/lambda)*sin(phi_i3*pi/180);  # Normalized Spatial Frequency of the Interferer #3.

tau_s  = (d/c)*sin(phi_s*pi/180);     # Time delay of the Target signal.
tau1   = (d/c)*sin(phi_i1*pi/180);    # Time delay of the Interferer #1.
tau2   = (d/c)*sin(phi_i2*pi/180);    # Time delay of the Interferer #2.
tau3   = (d/c)*sin(phi_i3*pi/180);    # Time delay of the Interferer #3.

# Target Signal definition.
s = zeros(ComplexF64,M,N)
v_s = exp.(-1im*2*pi*u_s*collect(0:M-1))/sqrt(M);  # Target Steering Vector.
for k=1:N
    s[:,k] = 10^(SNR/20)*v_s;  # Amplitude of Target Signal Generation.
end

# The uncorrelated unit power thermal noise samples with a Gaussian
# distribution are generated by:
w = (randn(M,N)+1im*randn(M,N))/sqrt(2)

# The interference [1iammer] vectors are generated by:
v_i1 = exp.(-1im*2*pi*u_int1*collect(0:M-1))/sqrt(M)
i_x1 = 10^(INR1/20)*v_i1*(randn(1,N)+1im*randn(1,N))/sqrt(2)

v_i2 = exp.(-1im*2*pi*u_int2*collect(0:M-1))/sqrt(M)
i_x2 = 10^(INR2/20)*v_i2*(randn(1,N)+1im*randn(1,N))/sqrt(2)

v_i3 = exp.(-1im*2*pi*u_int3*collect(0:M-1))/sqrt(M)
i_x3 = 10^(INR3/20)*v_i3*(randn(1,N)+1im*randn(1,N))/sqrt(2)

# The three signals are added to produce the overall array signal.
x = s + i_x1 + i_x2 + i_x3 + w

# Run LMS algorithm
mu = 0.001;                 # LMS step size
a = ones(ComplexF64,M);     # Complex weights
S = zeros(ComplexF64,M);    # Complex weights

ts = 1/(N*f);               # sample time
 
for k = 1:N
    d = cos(2*pi*f*k*ts);       # Reference Signal
    S = a.*x[:,k];
    y = sum(S);
    global e = conj(d) - y;
    println(e)
    global a += mu*x[:,k]*e;    # next weight calculation
end

println(a)
# Array Response
Nsamples1 = 3*10^4
angle1        = -90:180/Nsamples1:90-180/Nsamples1
LMS_Beam_Pat  = zeros(ComplexF64,Nsamples1)

for k = 1:Nsamples1
    u = (d/lambda)*sin(angle1[k]*pi/180)
    v = exp.(-1im*2*pi*u*collect(0:M-1))/sqrt(M); # Azimuth Scanning Steering Vector.
    LMS_Beam_Pat[k]  = a'*v;
end

# Plot the corresponding Beampatterns.
display(plot(angle1,10*log10.(abs.(LMS_Beam_Pat).^2),xlims=(-90,90),ylims=(-100,0)))

sleep(10)

# PolardB plot
display(plot(angle1*pi/180,10*log10.(abs.(LMS_Beam_Pat).^2), proj=:polar, lims=(-80,0)))

sleep(10)

LMS 代码不收敛(而是发散),我不知道为什么。我也不了解参考信号位以及它与目标转向矢量有何不同。也许对一般概念进行一些澄清会非常有帮助。我是波束成形的新手,我的背景是根求解器等。

下面是从 MVDR Beamforming Matlab 示例重写的工作 Julia 代码。它几乎与上面的代码相同,但没有 LMS 部分。

using Plots
using LinearAlgebra

M   = 20;        # Number of Array Elements.
N   = 200;       # Number of Signal Samples.
n   = 1:N;       # Time Sample Index Vector.
c   = 3*10^8;    # Speed of light
f   = 2.4*10^9;  # Frequency [Hz]
lambda = c/f;    # Incoming Signal Wavelength in [m].
d = lambda/2;    # Interelement Distance in [m].
SNR    = 20;     # Target SNR in dBs.
phi_s  = 0;      # Target azimuth angle in degrees.
phi_i1 = 20;     # Interference angle in degrees.
phi_i2 = -30;    # Interference angle in degrees.
phi_i3 = 50;     # Interference angle in degrees.
INR1   = 35;     # Interference #1 INR in dBs.
INR2   = 70;     # Interference #2 INR in dBs.
INR3   = 50;     # Interference #3 INR in dBs.

u_s    = (d/lambda)*sin(phi_s*pi/180);   # Normalized Spatial Frequency of the Target signal.
u_int1 = (d/lambda)*sin(phi_i1*pi/180);  # Normalized Spatial Frequency of the Interferer #1.
u_int2 = (d/lambda)*sin(phi_i2*pi/180);  # Normalized Spatial Frequency of the Interferer #2.
u_int3 = (d/lambda)*sin(phi_i3*pi/180);  # Normalized Spatial Frequency of the Interferer #3.

tau_s  = (d/c)*sin(phi_s*pi/180);     # Time delay of the Target signal.
tau1   = (d/c)*sin(phi_i1*pi/180);    # Time delay of the Interferer #1.
tau2   = (d/c)*sin(phi_i2*pi/180);    # Time delay of the Interferer #2.
tau3   = (d/c)*sin(phi_i3*pi/180);    # Time delay of the Interferer #3.

# Target Signal definition.
s = zeros(ComplexF64,M,N)
v_s = exp.(-1im*2*pi*u_s*collect(0:M-1))/sqrt(M);  # Target Steering Vector.
for k=1:N
    s[:,k] = 10^(SNR/20)*v_s;  # Amplitude of Target Signal Generation.
end

# The uncorrelated unit power thermal noise samples with a Gaussian
# distribution are generated by:
w = (randn(M,N)+1im*randn(M,N))/sqrt(2)

# The interference [1iammer] vectors are generated by:
v_i1 = exp.(-1im*2*pi*u_int1*collect(0:M-1))/sqrt(M)
i_x1 = 10^(INR1/20)*v_i1*(randn(1,N)+1im*randn(1,N))/sqrt(2)

v_i2 = exp.(-1im*2*pi*u_int2*collect(0:M-1))/sqrt(M)
i_x2 = 10^(INR2/20)*v_i2*(randn(1,N)+1im*randn(1,N))/sqrt(2)

v_i3 = exp.(-1im*2*pi*u_int3*collect(0:M-1))/sqrt(M)
i_x3 = 10^(INR3/20)*v_i3*(randn(1,N)+1im*randn(1,N))/sqrt(2)

#The three signals are added to produce the overall array signal.
x = s + i_x1 + i_x2 + i_x3 + w

iplusn = i_x1 + i_x2 + i_x3 + w

# Calculation of the i+n autocorrelation matrix.
R_ipn = 10^(INR1/10)*(v_i1*v_i1') + 10^(INR2/10)*(v_i2*v_i2') + 10^(INR3/10)*(v_i3*v_i3') + I

InvR = inv(R_ipn)

# Calculate the Beam Patterns.

# MVDR Optimum Beamformer computed for a phi_s = 0 deg.
c_opt = InvR*v_s/(v_s'*InvR*v_s); 

# Spatial Matched Filter | Steering Vector Beamformer Eq. (11.2.16).
c_mf = v_s

Nsamples1 = 3*10^4
angle1        = -90:180/Nsamples1:90-180/Nsamples1
Opt_Beam_Pat  = zeros(ComplexF64,Nsamples1)
Conv_Beam_Pat = zeros(ComplexF64,Nsamples1)

for k = 1:Nsamples1
    u = (d/lambda)*sin(angle1[k]*pi/180)
    v = exp.(-1im*2*pi*u*collect(0:M-1))/sqrt(M); # Azimuth Scanning Steering Vector.
    Opt_Beam_Pat[k]  = c_opt'*v
    Conv_Beam_Pat[k] = c_mf'*v
end

# Plot the corresponding Beampatterns.
plot(angle1,10*log10.(abs.(Conv_Beam_Pat).^2))
display(plot!(angle1,10*log10.(abs.(Opt_Beam_Pat).^2),xlims=(-90,90),ylims=(-100,0)))

sleep(10)

# PolardB plot
display(plot(angle1*pi/180,10*log10.(abs.(Opt_Beam_Pat).^2), proj=:polar, lims=(-80,0)))

sleep(10)

# Calculate the SINR loss factor for the Optimum Beamformer:
Nsamples = 3*10^4;  # The resolution must be very fine to reveal the true depth of the notches.
Lsinr_opt = zeros(ComplexF64,Nsamples,1);
Lsinr_mf  = zeros(Nsamples,1);
SNR0 = M*10^(SNR/10);
angle = -90:180/Nsamples:90-180/Nsamples;

for k=1:Nsamples
    v = exp.(-1im*pi*collect(0:M-1)*sin(angle[k]*pi/180))/sqrt(M); # Azimuth Scanning Steering Vector.
    c_mf = v;  # This is the spatial matched filter beamformer.
    Lsinr_opt[k] = v'*InvR*v;
    SINRout_mf = real(M*(10^(SNR/10))*(abs(c_mf'*v)^2)/(c_mf'*R_ipn*c_mf));
    Lsinr_mf[k] = SINRout_mf/SNR0;
end

plot(angle,10*log10.(abs.(Lsinr_opt)),xlims=(-90,0));
display(plot!(angle,10*log10.(abs.(Lsinr_mf)),xlims=(-90,90),ylims=(-75,5)));

sleep(10)
```
1个回答

一个好的做法是迭代地构建模拟。
应该知道,自适应滤波器适应参考信号,而所有其他数据都在干扰它。数据与参考的相关性越高,适应它的方式就越困难。

因此,参考信号应该是您可以从传感器上的信号中过滤掉的东西。例如,它可以是它的非延迟版本或传感器之一获得的信号。

为了让事情更简单,我创建了一个实际信号的示例,该示例基本上根据传感器获得不同的延迟。
向真实信号添加延迟的最简单方法是调整其解析信号的相位并取真实信号。

然后我们基本上有N带有样本的信号,M每个样本都进入自适应滤波器,该滤波器在该M x N矩阵的每一行上应用内积。

我在 MATLAB 和 Julia 中都创建了一个简单的模拟。
这是 Julia 代码的结果:

在此处输入图像描述

在上面我们看到了目标信号的天线增益30 [Deg]和干扰[20.0; -35.0; 50.0]
可以看出,该阵列确实适应并~1在参考方向上具有增益,同时拒绝所有其他方向。

完整代码可在我的StackExchange Signal Processing Q81138 GitHub 存储库中找到(查看SignalProcessing\Q81138文件夹)。