我一直在尝试实现一个简单的 LMS 自适应波束成形代码。由于我没有 MATALB 许可证,因此我决定使用 Julia,因为它们非常相似。为了让基本代码正常工作,我实现了 MATLAB 网站上的 MVRD 波束成形示例(我现在似乎找不到链接)。然后我使用链接https://teaandtechtime.com/adaptive-beamforming-with-lms/来启动 LMS。
我现在的代码是
using Plots
using LinearAlgebra
# Source: https://teaandtechtime.com/adaptive-beamforming-with-lms/
M = 20; # Number of Array Elements.
N = 200; # Number of Signal Samples.
n = 1:N; # Time Sample Index Vector.
c = 3*10^8; # Speed of light
f = 2.4*10^9; # Frequency [Hz]
lambda = c/f; # Incoming Signal Wavelength in [m].
d = lambda/2; # Interelement Distance in [m].
SNR = 20; # Target SNR in dBs.
phi_s = 0; # Target azimuth angle in degrees.
phi_i1 = 20; # Interference angle in degrees.
phi_i2 = -30; # Interference angle in degrees.
phi_i3 = 50; # Interference angle in degrees.
INR1 = 35; # Interference #1 INR in dBs.
INR2 = 70; # Interference #2 INR in dBs.
INR3 = 50; # Interference #3 INR in dBs.
u_s = (d/lambda)*sin(phi_s*pi/180); # Normalized Spatial Frequency of the Target signal.
u_int1 = (d/lambda)*sin(phi_i1*pi/180); # Normalized Spatial Frequency of the Interferer #1.
u_int2 = (d/lambda)*sin(phi_i2*pi/180); # Normalized Spatial Frequency of the Interferer #2.
u_int3 = (d/lambda)*sin(phi_i3*pi/180); # Normalized Spatial Frequency of the Interferer #3.
tau_s = (d/c)*sin(phi_s*pi/180); # Time delay of the Target signal.
tau1 = (d/c)*sin(phi_i1*pi/180); # Time delay of the Interferer #1.
tau2 = (d/c)*sin(phi_i2*pi/180); # Time delay of the Interferer #2.
tau3 = (d/c)*sin(phi_i3*pi/180); # Time delay of the Interferer #3.
# Target Signal definition.
s = zeros(ComplexF64,M,N)
v_s = exp.(-1im*2*pi*u_s*collect(0:M-1))/sqrt(M); # Target Steering Vector.
for k=1:N
s[:,k] = 10^(SNR/20)*v_s; # Amplitude of Target Signal Generation.
end
# The uncorrelated unit power thermal noise samples with a Gaussian
# distribution are generated by:
w = (randn(M,N)+1im*randn(M,N))/sqrt(2)
# The interference [1iammer] vectors are generated by:
v_i1 = exp.(-1im*2*pi*u_int1*collect(0:M-1))/sqrt(M)
i_x1 = 10^(INR1/20)*v_i1*(randn(1,N)+1im*randn(1,N))/sqrt(2)
v_i2 = exp.(-1im*2*pi*u_int2*collect(0:M-1))/sqrt(M)
i_x2 = 10^(INR2/20)*v_i2*(randn(1,N)+1im*randn(1,N))/sqrt(2)
v_i3 = exp.(-1im*2*pi*u_int3*collect(0:M-1))/sqrt(M)
i_x3 = 10^(INR3/20)*v_i3*(randn(1,N)+1im*randn(1,N))/sqrt(2)
# The three signals are added to produce the overall array signal.
x = s + i_x1 + i_x2 + i_x3 + w
# Run LMS algorithm
mu = 0.001; # LMS step size
a = ones(ComplexF64,M); # Complex weights
S = zeros(ComplexF64,M); # Complex weights
ts = 1/(N*f); # sample time
for k = 1:N
d = cos(2*pi*f*k*ts); # Reference Signal
S = a.*x[:,k];
y = sum(S);
global e = conj(d) - y;
println(e)
global a += mu*x[:,k]*e; # next weight calculation
end
println(a)
# Array Response
Nsamples1 = 3*10^4
angle1 = -90:180/Nsamples1:90-180/Nsamples1
LMS_Beam_Pat = zeros(ComplexF64,Nsamples1)
for k = 1:Nsamples1
u = (d/lambda)*sin(angle1[k]*pi/180)
v = exp.(-1im*2*pi*u*collect(0:M-1))/sqrt(M); # Azimuth Scanning Steering Vector.
LMS_Beam_Pat[k] = a'*v;
end
# Plot the corresponding Beampatterns.
display(plot(angle1,10*log10.(abs.(LMS_Beam_Pat).^2),xlims=(-90,90),ylims=(-100,0)))
sleep(10)
# PolardB plot
display(plot(angle1*pi/180,10*log10.(abs.(LMS_Beam_Pat).^2), proj=:polar, lims=(-80,0)))
sleep(10)
LMS 代码不收敛(而是发散),我不知道为什么。我也不了解参考信号位以及它与目标转向矢量有何不同。也许对一般概念进行一些澄清会非常有帮助。我是波束成形的新手,我的背景是根求解器等。
下面是从 MVDR Beamforming Matlab 示例重写的工作 Julia 代码。它几乎与上面的代码相同,但没有 LMS 部分。
using Plots
using LinearAlgebra
M = 20; # Number of Array Elements.
N = 200; # Number of Signal Samples.
n = 1:N; # Time Sample Index Vector.
c = 3*10^8; # Speed of light
f = 2.4*10^9; # Frequency [Hz]
lambda = c/f; # Incoming Signal Wavelength in [m].
d = lambda/2; # Interelement Distance in [m].
SNR = 20; # Target SNR in dBs.
phi_s = 0; # Target azimuth angle in degrees.
phi_i1 = 20; # Interference angle in degrees.
phi_i2 = -30; # Interference angle in degrees.
phi_i3 = 50; # Interference angle in degrees.
INR1 = 35; # Interference #1 INR in dBs.
INR2 = 70; # Interference #2 INR in dBs.
INR3 = 50; # Interference #3 INR in dBs.
u_s = (d/lambda)*sin(phi_s*pi/180); # Normalized Spatial Frequency of the Target signal.
u_int1 = (d/lambda)*sin(phi_i1*pi/180); # Normalized Spatial Frequency of the Interferer #1.
u_int2 = (d/lambda)*sin(phi_i2*pi/180); # Normalized Spatial Frequency of the Interferer #2.
u_int3 = (d/lambda)*sin(phi_i3*pi/180); # Normalized Spatial Frequency of the Interferer #3.
tau_s = (d/c)*sin(phi_s*pi/180); # Time delay of the Target signal.
tau1 = (d/c)*sin(phi_i1*pi/180); # Time delay of the Interferer #1.
tau2 = (d/c)*sin(phi_i2*pi/180); # Time delay of the Interferer #2.
tau3 = (d/c)*sin(phi_i3*pi/180); # Time delay of the Interferer #3.
# Target Signal definition.
s = zeros(ComplexF64,M,N)
v_s = exp.(-1im*2*pi*u_s*collect(0:M-1))/sqrt(M); # Target Steering Vector.
for k=1:N
s[:,k] = 10^(SNR/20)*v_s; # Amplitude of Target Signal Generation.
end
# The uncorrelated unit power thermal noise samples with a Gaussian
# distribution are generated by:
w = (randn(M,N)+1im*randn(M,N))/sqrt(2)
# The interference [1iammer] vectors are generated by:
v_i1 = exp.(-1im*2*pi*u_int1*collect(0:M-1))/sqrt(M)
i_x1 = 10^(INR1/20)*v_i1*(randn(1,N)+1im*randn(1,N))/sqrt(2)
v_i2 = exp.(-1im*2*pi*u_int2*collect(0:M-1))/sqrt(M)
i_x2 = 10^(INR2/20)*v_i2*(randn(1,N)+1im*randn(1,N))/sqrt(2)
v_i3 = exp.(-1im*2*pi*u_int3*collect(0:M-1))/sqrt(M)
i_x3 = 10^(INR3/20)*v_i3*(randn(1,N)+1im*randn(1,N))/sqrt(2)
#The three signals are added to produce the overall array signal.
x = s + i_x1 + i_x2 + i_x3 + w
iplusn = i_x1 + i_x2 + i_x3 + w
# Calculation of the i+n autocorrelation matrix.
R_ipn = 10^(INR1/10)*(v_i1*v_i1') + 10^(INR2/10)*(v_i2*v_i2') + 10^(INR3/10)*(v_i3*v_i3') + I
InvR = inv(R_ipn)
# Calculate the Beam Patterns.
# MVDR Optimum Beamformer computed for a phi_s = 0 deg.
c_opt = InvR*v_s/(v_s'*InvR*v_s);
# Spatial Matched Filter | Steering Vector Beamformer Eq. (11.2.16).
c_mf = v_s
Nsamples1 = 3*10^4
angle1 = -90:180/Nsamples1:90-180/Nsamples1
Opt_Beam_Pat = zeros(ComplexF64,Nsamples1)
Conv_Beam_Pat = zeros(ComplexF64,Nsamples1)
for k = 1:Nsamples1
u = (d/lambda)*sin(angle1[k]*pi/180)
v = exp.(-1im*2*pi*u*collect(0:M-1))/sqrt(M); # Azimuth Scanning Steering Vector.
Opt_Beam_Pat[k] = c_opt'*v
Conv_Beam_Pat[k] = c_mf'*v
end
# Plot the corresponding Beampatterns.
plot(angle1,10*log10.(abs.(Conv_Beam_Pat).^2))
display(plot!(angle1,10*log10.(abs.(Opt_Beam_Pat).^2),xlims=(-90,90),ylims=(-100,0)))
sleep(10)
# PolardB plot
display(plot(angle1*pi/180,10*log10.(abs.(Opt_Beam_Pat).^2), proj=:polar, lims=(-80,0)))
sleep(10)
# Calculate the SINR loss factor for the Optimum Beamformer:
Nsamples = 3*10^4; # The resolution must be very fine to reveal the true depth of the notches.
Lsinr_opt = zeros(ComplexF64,Nsamples,1);
Lsinr_mf = zeros(Nsamples,1);
SNR0 = M*10^(SNR/10);
angle = -90:180/Nsamples:90-180/Nsamples;
for k=1:Nsamples
v = exp.(-1im*pi*collect(0:M-1)*sin(angle[k]*pi/180))/sqrt(M); # Azimuth Scanning Steering Vector.
c_mf = v; # This is the spatial matched filter beamformer.
Lsinr_opt[k] = v'*InvR*v;
SINRout_mf = real(M*(10^(SNR/10))*(abs(c_mf'*v)^2)/(c_mf'*R_ipn*c_mf));
Lsinr_mf[k] = SINRout_mf/SNR0;
end
plot(angle,10*log10.(abs.(Lsinr_opt)),xlims=(-90,0));
display(plot!(angle,10*log10.(abs.(Lsinr_mf)),xlims=(-90,90),ylims=(-75,5)));
sleep(10)
```