在卷积神经网络的训练过程中,网络在每个 epoch 之后输出训练/验证准确率/损失,如下图所示:
Epoch 1/100
691/691 [==============================] - 2174s 3s/step - loss: 0.6473 - acc: 0.6257 - val_loss: 0.5394 - val_acc: 0.8258
Epoch 2/100
691/691 [==============================] - 2145s 3s/step - loss: 0.5364 - acc: 0.7692 - val_loss: 0.4283 - val_acc: 0.8675
Epoch 3/100
691/691 [==============================] - 2124s 3s/step - loss: 0.4341 - acc: 0.8423 - val_loss: 0.3381 - val_acc: 0.9024
Epoch 4/100
691/691 [==============================] - 2126s 3s/step - loss: 0.3467 - acc: 0.8880 - val_loss: 0.2643 - val_acc: 0.9267
Epoch 5/100
691/691 [==============================] - 2123s 3s/step - loss: 0.2769 - acc: 0.9202 - val_loss: 0.2077 - val_acc: 0.9455
Epoch 6/100
691/691 [==============================] - 2118s 3s/step - loss: 0.2207 - acc: 0.9431 - val_loss: 0.1654 - val_acc: 0.9575
Epoch 7/100
691/691 [==============================] - 2125s 3s/step - loss: 0.1789 - acc: 0.9562 - val_loss: 0.1348 - val_acc: 0.9663
Epoch 8/100
691/691 [==============================] - 2120s 3s/step - loss: 0.1472 - acc: 0.9655 - val_loss: 0.1117 - val_acc: 0.9719
Epoch 9/100
691/691 [==============================] - 2119s 3s/step - loss: 0.1220 - acc: 0.9728 - val_loss: 0.0956 - val_acc: 0.9746
Epoch 10/100
691/691 [==============================] - 2119s 3s/step - loss: 0.1037 - acc: 0.9774 - val_loss: 0.0828 - val_acc: 0.9781
Epoch 11/100
691/691 [==============================] - 2110s 3s/step - loss: 0.0899 - acc: 0.9806 - val_loss: 0.0747 - val_acc: 0.9793
Epoch 12/100
691/691 [==============================] - 2123s 3s/step - loss: 0.0785 - acc: 0.9835 - val_loss: 0.0651 - val_acc: 0.9825
Epoch 13/100
691/691 [==============================] - 2130s 3s/step - loss: 0.0689 - acc: 0.9860 - val_loss: 0.0557 - val_acc: 0.9857
Epoch 14/100
691/691 [==============================] - 2124s 3s/step - loss: 0.0618 - acc: 0.9874 - val_loss: 0.0509 - val_acc: 0.9869
Epoch 15/100
691/691 [==============================] - 2122s 3s/step - loss: 0.0555 - acc: 0.9891 - val_loss: 0.0467 - val_acc: 0.9876
Epoch 16/100
152/691 [=====>........................] - ETA: 22:10 - loss: 0.0515 - acc: 0.9892
我的计划是获取历史变量并绘制精度/损失如下:
history=model.fit_generator( .... )
plt.plot(history.history["acc"]) ...
但由于一些硬件问题,我的训练刚刚停止。因此,没有绘制图表。但是如上所述,我有 15 个时代的日志。我可以从上面的日志中绘制准确度/损失图吗?