给定一个数据集:
x <- c(4.9958942,5.9730174,9.8642732,11.5609671,10.1178216,6.6279774,9.2441754,9.9419299,13.4710469,6.0601435,8.2095239,7.9456672,12.7039825,7.4197810,9.5928275,8.2267352,2.8314614,11.5653497,6.0828073,11.3926117,10.5403929,14.9751607,11.7647580,8.2867261,10.0291522,7.7132033,6.3337642,14.6066222,11.3436587,11.2717791,10.8818323,8.0320657,6.7354041,9.1871676,13.4381778,7.4353197,8.9210043,10.2010750,11.9442048,11.0081195,4.3369520,13.2562675,15.9945674,8.7528248,14.4948086,14.3577443,6.7438382,9.1434984,15.4599419,13.1424011,7.0481925,7.4823108,10.5743730,6.4166006,11.8225244,8.9388744,10.3698150,10.3965596,13.5226492,16.0069239,6.1139247,11.0838351,9.1659242,7.9896031,10.7282936,14.2666492,13.6478802,10.6248561,15.3834373,11.5096033,14.5806570,10.7648690,5.3407430,7.7535042,7.1942866,9.8867927,12.7413156,10.8127809,8.1726772,8.3965665)
..我想通过参数估计来确定最合适的概率分布(伽马、贝塔、正态、指数、泊松、卡方等)。我已经知道以下链接上的问题,其中使用 R 提供了解决方案: https ://stackoverflow.com/questions/2661402/given-a-set-of-random-numbers-drawn-from-a-连续单变量分布-f 建议的最佳解决方案如下:
> library(MASS)
> fitdistr(x, 't')$loglik #$
> fitdistr(x, 'normal')$loglik #$
> fitdistr(x, 'logistic')$loglik #$
> fitdistr(x, 'weibull')$loglik #$
> fitdistr(x, 'gamma')$loglik #$
> fitdistr(x, 'lognormal')$loglik #$
> fitdistr(x, 'exponential')$loglik #$
并选择 loglik 值最小的分布。但是,其他分布(例如 beta 分布)需要在 fitdistr() 函数中指定一些附加参数:
fitdistr(x, 'beta', list(shape1 = some value, shape2= some value)).
鉴于我试图在没有任何先验信息的情况下确定最佳分布,我不知道每个分布的参数值可能是什么。是否有另一种解决方案考虑到这一要求?它不必在 R 中。