数据精度:
- 报价是一个虚拟变量
- 分钟数一天内的所有分钟数
- temp 是温度
这是我的代码:
ctree <- ctree(quotation ~ minute + temp, data = visitquot)
print(ctree)
Fitted party:
[1] root
| [2] minute <= 600
| | [3] minute <= 227
| | | [4] temp <= -0.4259
| | | | [5] temp <= -2.3174: 0.015 (n = 6254, err = 89.7)
| | | | [6] temp > -2.3174
| | | | | [7] minute <= 68: 0.028 (n = 4562, err = 126.3)
| | | | | [8] minute > 68: 0.046 (n = 7100, err = 312.8)
| | | [9] temp > -0.4259
| | | | [10] temp <= 6.0726: 0.015 (n = 56413, err = 860.5)
| | | | [11] temp > 6.0726: 0.019 (n = 39779, err = 758.9)
| | [12] minute > 227
| | | [13] minute <= 501
| | | | [14] minute <= 291: 0.013 (n = 30671, err = 388.0)
| | | | [15] minute > 291: 0.009 (n = 559646, err = 5009.3)
| | | [16] minute > 501
| | | | [17] temp <= 5.2105
| | | | | [18] temp <= -1.8393: 0.009 (n = 66326, err = 617.1)
| | | | | [19] temp > -1.8393: 0.012 (n = 355986, err = 4289.0)
| | | | [20] temp > 5.2105
| | | | | [21] temp <= 13.6927: 0.014 (n = 287909, err = 3900.7)
| | | | | [22] temp > 13.6927
| | | | | | [23] temp <= 14: 0.035 (n = 2769, err = 92.7)
| | | | | | [24] temp > 14: 0.007 (n = 2161, err = 15.9)
| [25] minute > 600
| | [26] temp <= 1.6418
| | | [27] temp <= -2.3366: 0.012 (n = 110810, err = 1268.1)
| | | [28] temp > -2.3366: 0.014 (n = 584457, err = 7973.2)
| | [29] temp > 1.6418: 0.016 (n = 3753208, err = 57864.3)
然后我绘制了树:
plot(ctree, type = "simple")
这是输出的一部分:
我的问题是:
- 在第一个输出中
print(ctree)
,让我们看最后一行[29] temp > 1.6418: 0.016 (n = 3753208, err = 57864.3)
。价值是什么0.016
意思?那是p值吗?是什么err = 57864.3
意思?它不能是归因错误的计数,因为它是一个浮点数。 - 我在灰色方块中找不到任何类似的输出。如果有人知道如何解释它。p 值怎么可能是负数?