我们有以下几点:
我们如何才能找到最佳拟合线通过积分?我的计算器可以选择找到最佳拟合线通过这几点,即:
我怎样才能找到最合适的配件? 在我看来,我们不能只删除在不补偿的情况下?
我们有以下几点:
我怎样才能找到最合适的配件? 在我看来,我们不能只删除在不补偿的情况下?
当截距被抑制时,斜率的普通最小二乘估计为:
@gung 给出了 OLS 估计值。这就是你所寻求的。
但是,在处理线必须通过原点的物理量时,误差的大小通常会随着 x 值的变化而变化(大致具有恒定的相对误差)。在这种情况下,普通的未加权最小二乘法是不合适的。
在这种情况下,一种方法(有几种可能性)是取对数,从 y 中减去 x,并通过差异的平均值估计(原始变量的)对数斜率。
或者,可以使用加权最小二乘。在相对误差恒定的情况下,将减少为使用估计器(通过原点的所有斜率的平均值)。
还有其他方法(例如 GLM),但如果你是在计算器上做的,我会倾向于我的第一个建议。
您还应该考虑您所做的任何假设的适当性。
我认为通过原点添加 WLS 线的推导可能是有益的,然后我的“平均斜率”和 gungs OLS 是特殊情况:
模型是在哪里
我们想最小化
设置为零以获得 LS 解我们获得 , 或者.
什么时候对全部,这产生了gung的OLS解决方案。
什么时候(这对于散布随平均值增加的情况是最佳的),这会产生上述“斜率平均值”解决方案。