我有这些数据:
set.seed(1)
predictor <- rnorm(20)
set.seed(1)
counts <- c(sample(1:1000, 20))
df <- data.frame(counts, predictor)
我进行了泊松回归
poisson_counts <- glm(counts ~ predictor, data = df, family = "poisson")
和负二项式回归:
require(MASS)
nb_counts <- glm.nb(counts ~ predictor, data = df)
然后我计算了泊松回归的离散统计:
sum(residuals(poisson_counts, type="pearson")^2)/df.residual(poisson_counts)
# [1] 145.4905
负二项式回归:
sum(residuals(nb_counts, type="pearson")^2)/df.residual(nb_counts)
# [1] 0.7650289
有没有人能够在不使用方程式的情况下解释为什么负二项式回归的离差统计量远小于泊松回归的离差统计量?