我有一个问题,关于我应该如何关注线性混合模型中残差假设的正态性可能违反。我有一个相对较小的数据集,在拟合模型后(在 R 中使用“lmer”),Shapiro-Wilks 检验显示残差与正态分布存在显着偏差。我的变量的对数转换不能令人满意地处理这个问题。
在我寻找如何处理这个问题的回应时,我遇到了不应该进行正态性测试的建议(请参阅此处类似问题的答案)。相反,建议对具有与我的残差相同的 N 的随机正态数据进行 QQ 图,以查看我的残差的 QQ 图是否明显不同。我发现的其他建议似乎表明推理似乎对各种违反 LMM 假设的行为具有鲁棒性 (请参阅此处的博客文章)。
我的问题
1)如果这是您的数据,您是否会担心 LMM 残差缺乏正态性(请参阅下面的数据和输出)?
2)如果您担心,在日志转换后您是否仍然担心(再次,请参阅下面的数据和输出)?
3)如果以上两个答案都是“是”,我该如何处理残差的非正态性?
数据和非转换分析
# load relevant library
library(lme4)
#--- declare the data
study <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13,
13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17)
condition <- c(1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1,
2, 2, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 1, 1)
age <- rep(c(1, 2), times = length(study) / 2)
congruent <- c(937, 611, 1067, 611, 1053, 943, 1097, 1015, 1155, 974, 860, 594,
910, 605, 912, 632, 998, 660, 1989, 1176, 1337, 936, 2657, 1234,
1195, 999, 1010, 634, 1205, 620, 1154, 909, 1425, 1172, 1388,
1084, 641, 407, 1429, 810, 909, 510, 1358, 802, 1132, 639,
1501, 703, 1471, 955, 1342, 631, 1178, 676, 1033, 723)
incongruent <- c(1025, 705, 1204, 705, 1119, 1008, 1184, 1046, 1225, 1013, 1308,
895, 1234, 901, 1204, 854, 1177, 828, 2085, 1269, 1350, 929,
2697, 1231, 1233, 1032, 1062, 679, 1263, 674, 1183, 914, 1458,
1184, 1382, 1086, 632, 424, 1510, 871, 978, 568, 1670, 881,
1395, 747, 1694, 795, 1504, 999, 2112, 948, 1494, 992, 1039,
781)
data <- data.frame(as.factor(study), as.factor(condition), age, congruent,
incongruent)
#--- LMM analysis
# center age
data$age <- scale(data$age, center = TRUE, scale = FALSE)
# fit
fit <- lmer(incongruent ~ congruent + (1|study) + (1|condition),
data = data, REML = FALSE)
# plot & test the residual
qqnorm(resid(fit))
qqline(resid(fit))
shapiro.test(resid(fit))
Shapiro-Wilk normality test
data: resid(fit)
W = 0.74417, p-value = 1.575e-08
对数转换数据
# do the log transform
data$congruent <- log(data$congruent)
data$incongruent <- log(data$incongruent)
# fit again
log_fit <- lmer(incongruent ~ congruent + (1|study) + (1|condition),
data = data, REML = FALSE)
# plot & test the residual
qqnorm(resid(log_fit))
qqline(resid(log_fit))
shapiro.test(resid(log_fit))
Shapiro-Wilk normality test
data: resid(log_fit)
W = 0.93241, p-value = 0.003732
模拟正态分布 QQ 图
执行这个推荐的模拟,我的对数转换 QQ 图看起来与真实正态分布生成的 QQ 图并没有太大的不同,其样本量与我的数据相同(N = 52):
set.seed(42)
par(mfrow = c(3, 3))
for(i in 1:9){
x = rnorm(52)
qqnorm(x)
qqline(x)
}