glm.fit:以数字形式出现的拟合概率为 0 或 1,但罪魁祸首特征是数字

机器算法验证 r 回归 物流 线性模型 分离
2022-04-11 00:24:44

我收到了标题中的警告信息,并查看了诸如this one之类的帖子。

我想了解此功能如何与目标变量完美分离,因为我只是假设这种警告将与分类特征更相关,其中一个特定级别具有所有真或假目标类。

上下文是网站转换(交易使购买 True = X1 或不 = False X0)。我想了解给定网站会话的平均页面加载时间的影响。在删除设备类型和流量来源等其他功能后,我发现我只收到带有 Avg_Load_Time 功能的警告,这是一个数字 (dbl) 功能。

我的下一个想法是,也许所有平均加载时间为 0 的会话都导致了完美的分离,但是我没有零,只有一些接近 0:

> summary(x$Avg_Load_Time)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.24    2.32    4.27   10.18    8.73  484.62 

然后,我查看了仅针对具有事务的那些会话的平均加载时间摘要,其中目标是 X1:

> summary(y %>% filter(target == "X1") %>% select(Avg_Load_Time))
 Avg_Load_Time   
 Min.   : 0.780  
 1st Qu.: 2.478  
 Median : 3.785  
 Mean   : 4.253  
 3rd Qu.: 4.815  
 Max.   :16.410 

我可以在这里看到,虽然最小值更高,但它不是 0。

鉴于我已将其范围缩小到一个特征,我如何才能找到完美分离的原因?

如果有帮助,这里是 1000 个样本。任何关于理解我的分离的提示表示赞赏:

dput(x %>% sample_n(1000))
structure(list(target = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L), .Label = c("X0", "X1"), class = "factor"), Avg_Load_Time = c(0.77, 
39.1, 5.34, 5.45, 1.74, 2.18, 9.19, 4.73, 9.37, 2.45, 4.33, 1.86, 
1.93, 4.32, 18.13, 6.93, 3.57, 13.93, 130.38, 4.47, 26.67, 14.48, 
19.54, 9.41, 6.51, 3.78, 1.91, 2.98, 5.47, 2.24, 3.07, 27.9, 
8.8, 65.66, 10.23, 3.32, 1.81, 5.02, 2.71, 1.04, 11.76, 5.73, 
2.32, 3.54, 2.3, 63.9, 4.5, 0.78, 1.44, 4.06, 0.7, 1.79, 7.7, 
4.3, 33.25, 1.44, 0.79, 6.39, 4.17, 0.6, 3.58, 16.84, 11.07, 
16.05, 28.29, 9.22, 4.1, 7.81, 0.55, 64.88, 3.32, 10.44, 3.22, 
1.57, 1.01, 7.16, 3.41, 5.74, 3.73, 2.62, 4.39, 17.92, 5.05, 
1.94, 6.95, 1.86, 27.07, 7.69, 4.05, 2.96, 8.03, 3.21, 5.33, 
1.62, 17.03, 8.37, 1.7, 5.08, 4.96, 0.83, 4.65, 16.36, 7.04, 
4.9, 22.98, 6.08, 4.3, 2.91, 1.52, 1.81, 11.28, 16.71, 4.17, 
9.62, 3.18, 2.66, 0.78, 9.3, 25.39, 5.84, 1.13, 58.03, 1.45, 
10.45, 19.5, 1.25, 1.06, 30.49, 2.9, 7.31, 3.61, 4.64, 0.68, 
10.43, 8.84, 1.78, 17.16, 6.68, 4.61, 7.43, 5.03, 2.98, 2.89, 
4.15, 9.47, 3.68, 2.16, 2.09, 41.78, 3.06, 113.4, 30.13, 5.37, 
14.83, 2.1, 2.03, 13.51, 3.1, 5.54, 4.61, 18.09, 23.82, 34.64, 
4.99, 8.35, 7.45, 3.98, 3.44, 1.01, 34.45, 64.03, 2.82, 13.63, 
13.34, 0.66, 4.15, 2.06, 19.7, 1.38, 2.16, 10.65, 5.89, 57.27, 
17.51, 3.5, 10.97, 2.2, 9.38, 2.06, 5.25, 4.11, 72.22, 0.93, 
3.65, 5.71, 4.79, 3.01, 0.95, 6.6, 15.35, 1.05, 3.31, 3.44, 8.31, 
11.35, 6.63, 4.87, 4.83, 10.05, 1.01, 25.35, 3.79, 11.14, 24.26, 
9.71, 1.76, 3.75, 1.66, 7.02, 6.41, 3.72, 3.58, 35.16, 3.24, 
2.29, 9.61, 9.31, 0.67, 0.63, 7.08, 10.85, 2.65, 4.35, 5.86, 
3.24, 4.32, 3.34, 2.37, 4.23, 1.97, 1.83, 15.42, 4.17, 5.18, 
2.37, 8.91, 0.71, 20.18, 5.96, 1.41, 3.11, 26.85, 2.47, 5.99, 
2.53, 1.86, 2.67, 13.66, 8.28, 5.7, 8.1, 3.95, 139.35, 15.37, 
2.55, 2.85, 5.46, 2.55, 17.16, 2.87, 23.42, 1.58, 62.58, 7.5, 
14.41, 1.57, 4.42, 5.41, 4.62, 12.5, 3.3, 4.37, 3.91, 3.35, 7.27, 
1.11, 24.86, 18, 8.83, 7.87, 2.68, 2.77, 32.58, 12.66, 2.64, 
9.89, 30.86, 10.17, 3.49, 37.99, 4.99, 12.98, 1.75, 11.92, 45.36, 
3.35, 2.28, 2.83, 19.92, 9.33, 4.98, 19.76, 2.92, 3.84, 4.8, 
205.98, 4.53, 8.82, 3.74, 21.8, 3.56, 3.9, 2.29, 7.85, 79.96, 
3.56, 2.78, 5.9, 2.93, 3.76, 1.79, 12.94, 2.34, 25.17, 22.71, 
4.15, 6.87, 147.62, 6.1, 3.23, 93.41, 12.91, 4.93, 3.22, 5.84, 
8.73, 17.73, 79.63, 182.45, 2.36, 1.62, 1.22, 1.09, 3.75, 0.93, 
1.82, 12.14, 4.38, 2.1, 0.88, 4.36, 1.33, 3.74, 2.85, 2.34, 13.2, 
5.44, 9.94, 6.6, 2.79, 7.7, 10.99, 11.43, 19.7, 3.79, 2.26, 1.68, 
23.24, 7.41, 3.13, 5.22, 2.4, 4.48, 2.35, 10.36, 1.25, 34.14, 
7.37, 3.46, 18.84, 8.32, 4.9, 2.37, 1.03, 4.56, 9.7, 20.95, 1.01, 
17.42, 9.29, 0.88, 3.84, 13.82, 0.52, 4.51, 11.74, 1, 6.28, 5.49, 
6.13, 5.62, 0.53, 6.72, 2.08, 3.38, 68.72, 4.56, 2.45, 15.21, 
5.54, 5.13, 3.86, 4.89, 1.21, 3.88, 4.83, 4.97, 8.22, 5.76, 4.07, 
6.83, 1.94, 120.71, 3.26, 7.38, 4.21, 5.95, 3.7, 1.28, 3.43, 
1.42, 1.63, 3.97, 10.57, 8.98, 2.37, 21.73, 8.04, 5.18, 2.48, 
5.74, 4.65, 1.85, 6.75, 0.98, 1.72, 4, 6.08, 7.21, 8, 10.98, 
1.94, 0.75, 30.3, 7.29, 3.31, 4.3, 66.62, 3.87, 3.01, 1.56, 3.37, 
5.44, 6.76, 6.21, 1.39, 8.02, 2.95, 9.56, 1.62, 2.28, 0.46, 2, 
12.55, 4.66, 15.48, 1.76, 5.81, 1.94, 4.25, 2.65, 1.51, 2.7, 
27.43, 46.24, 2.67, 16.77, 0.7, 0.4, 6.07, 11.3, 1.49, 3.45, 
3.2, 22.74, 1.5, 0.7, 2.6, 7.89, 2.57, 3.42, 2.46, 1.7, 2.45, 
2.12, 7.97, 9.4, 3.58, 7.2, 12.18, 15.27, 2.94, 5.19, 7.33, 7.54, 
5.01, 5.08, 10.65, 16.13, 2.46, 5.28, 3.02, 2.82, 10.84, 0.53, 
4.22, 3.51, 10.69, 4.31, 2.55, 7.58, 19.3, 4.97, 9.39, 1.66, 
0.45, 2.71, 0.82, 0.7, 8.76, 21.98, 1.95, 1.09, 3.78, 2.71, 2.55, 
1.69, 17.2, 6.37, 11.42, 2.33, 0.98, 52.6, 1.67, 1.32, 21.99, 
34.11, 4.99, 4.52, 6.84, 2.45, 0.7, 1.16, 9.52, 21.73, 2.32, 
5.26, 7.34, 3.55, 2.6, 4.29, 9.48, 0.48, 7.22, 1.94, 4.25, 6.62, 
6.76, 3.39, 1.67, 3.81, 38.39, 3.49, 65.29, 3.59, 11.54, 1.87, 
4.21, 6.6, 7.3, 8.97, 9.82, 2.65, 4.99, 2.03, 4.81, 3.08, 6.41, 
1.29, 1.04, 3.53, 1.29, 4.07, 2.92, 2.91, 3.82, 4.94, 2.25, 10.05, 
8.87, 1.51, 3.26, 3.4, 0.68, 7.64, 0.6, 0.78, 6.25, 2.89, 17.56, 
4.83, 5.55, 9.6, 3.31, 2.43, 6.96, 5.05, 5.95, 6.96, 15.06, 45.99, 
1.74, 3.48, 1.83, 2.76, 6.35, 24.95, 1.96, 2.23, 2.23, 17.25, 
5.2, 12.57, 11.58, 10.85, 2.91, 1.1, 3.2, 6.4, 3.15, 5.55, 1.72, 
2.34, 1.83, 49.76, 1.87, 5.72, 3.59, 0.81, 8.8, 6.76, 2.06, 3.15, 
9.06, 15.15, 1.64, 4.92, 9.64, 3.7, 1.78, 1.88, 3.98, 4.93, 3.37, 
10.57, 4.41, 4.67, 6.39, 3.51, 21.83, 2.33, 0.68, 1.66, 2.89, 
4.57, 360.7, 5.89, 6.63, 8.59, 0.48, 8.08, 2.01, 1.59, 12.45, 
0.99, 2.3, 2.79, 1.47, 2.78, 2.05, 3.12, 17.84, 185.53, 3.71, 
0.8, 1.82, 12.42, 31.16, 2.27, 19.23, 1.48, 7.22, 0.24, 11.73, 
1.25, 14.06, 11.55, 1.48, 1.73, 5.01, 1.66, 2.25, 3.26, 6.73, 
4.66, 1.8, 5.25, 8.15, 3.94, 2.72, 1.69, 25.96, 4.46, 1.51, 1.61, 
1.67, 2.16, 5.24, 22.86, 3.64, 10.68, 4.65, 0.62, 0.64, 7.69, 
3.63, 37.52, 9.98, 3.27, 10.94, 1.92, 2.4, 1.04, 6.05, 5.34, 
3.4, 4.08, 72.08, 3.95, 5.1, 1.44, 17.06, 2.14, 4.17, 3.39, 7.79, 
5.71, 19.87, 2.54, 2.49, 3.44, 3.85, 12.06, 12.18, 1.7, 3.12, 
17.3, 4.41, 4.4, 0.82, 57.91, 124.91, 5.35, 5.41, 20.75, 13.54, 
0.82, 0.84, 8.62, 10.04, 1.08, 10.49, 7.05, 2.72, 1.18, 2.05, 
6.87, 3.51, 20.66, 4.69, 31.9, 4.64, 6.04, 1.71, 6.91, 70.11, 
2.83, 9.88, 2, 10.48, 4.25, 12.24, 1.27, 50.22, 0.85, 3.51, 5.47, 
0.69, 1.45, 2.97, 1.58, 2.2, 6.79, 15.88, 3.52, 1.75, 18.68, 
3.81, 2.87, 4.06, 69.44, 91.15, 0.79, 1.15, 6.57, 1.18, 4.33, 
7.3, 42.46, 40.83, 6.48, 32.34, 3.16, 41.11, 4.61, 1.57, 2.22, 
1.2, 2.35, 10.48, 6.82, 5.38, 5.51, 3.34, 57.3, 51.9, 10.52, 
1.85, 3.37, 4.42, 1.09, 29.53, 1.76, 2.48, 2.54, 10.22, 11.62, 
59.79, 176.17, 7.18, 4.36, 1.76, 7.34, 4.55, 8.21, 3.94, 9.64, 
1.62, 19.5, 5.53, 5.28, 1.59, 43.85, 24.02, 5.95, 6.34, 4.54, 
3.71, 1.48, 9.18, 5.56, 6.08, 15.67, 24.48, 0.8, 12.53, 4.14, 
29.11, 19.85, 2.54, 92.42, 44.65, 8.07, 2.44, 3.93, 3.79, 13.65, 
17.64, 3.67, 9.42, 3.43, 1.81, 11.76, 1.63, 4.27, 5.87, 11.66, 
3.77, 1.62, 3.58, 15.66, 4.46, 8.12, 7.35, 8.62, 6.24, 4.28, 
1.68, 3.93, 3.27, 2.67, 2.93, 161.22, 3.54, 2.62, 40.6, 1.09, 
2.3, 9.57, 1.1, 3.33, 17.41, 7.63, 4.01, 16.9, 3.8, 2.8, 3.56, 
2.51, 6.26, 1.84, 2.98, 4.92, 2.12, 6.35, 11.74, 2.64, 14.35, 
452.01, 1.7, 1.91, 4.79, 2.49, 7.61, 1.54, 8.19, 7.95, 2.81, 
7.08, 9.06, 5.17, 2.08, 7.92, 4.39, 22.12, 3.42, 3.82, 3.17, 
17.41, 3.29, 10.66, 31.54, 3.62, 26.38, 3.43, 10.32, 1.32, 10.71, 
2.75, 0.95)), row.names = c(6184L, 2551L, 2196L, 1039L, 2202L, 
2513L, 6486L, 916L, 4414L, 2131L, 4485L, 48L, 4451L, 428L, 82L, 
2537L, 3385L, 862L, 1963L, 4647L, 5071L, 2291L, 2995L, 3809L, 
2285L, 1515L, 327L, 3483L, 65L, 3061L, 3869L, 3477L, 3101L, 2373L, 
2719L, 3135L, 4565L, 1753L, 3063L, 6430L, 6003L, 2311L, 4421L, 
1644L, 4624L, 3624L, 5539L, 5660L, 6346L, 2726L, 1827L, 4540L, 
1783L, 6390L, 3L, 5930L, 4033L, 389L, 4441L, 4337L, 5426L, 4693L, 
1528L, 1651L, 1031L, 6197L, 1658L, 1607L, 3984L, 169L, 5577L, 
3275L, 4969L, 2540L, 4156L, 6473L, 5848L, 3533L, 3060L, 3899L, 
1891L, 4948L, 6339L, 3585L, 720L, 4000L, 1086L, 145L, 1657L, 
3040L, 3259L, 201L, 6284L, 40L, 4519L, 3823L, 3223L, 5009L, 5800L, 
5318L, 6275L, 1786L, 2839L, 6337L, 1608L, 209L, 5153L, 6367L, 
4579L, 354L, 4555L, 5648L, 4864L, 5039L, 1677L, 6116L, 5098L, 
1642L, 4770L, 2200L, 6191L, 3071L, 450L, 3636L, 4081L, 2510L, 
5294L, 1727L, 2803L, 2432L, 1601L, 3750L, 1342L, 1631L, 4963L, 
5250L, 1706L, 4321L, 2363L, 5493L, 1785L, 1871L, 4915L, 3863L, 
2609L, 3569L, 5090L, 6215L, 776L, 5994L, 3678L, 2258L, 2520L, 
5860L, 4978L, 571L, 1565L, 4433L, 2162L, 4047L, 4313L, 6357L, 
4122L, 5517L, 6401L, 709L, 2926L, 3962L, 5218L, 3417L, 4282L, 
6511L, 4401L, 308L, 6254L, 2895L, 1322L, 3314L, 1255L, 3496L, 
2530L, 1512L, 2848L, 4397L, 6493L, 4089L, 2933L, 3121L, 5843L, 
4478L, 2383L, 799L, 3954L, 1881L, 6246L, 6538L, 5655L, 3924L, 
6358L, 598L, 6321L, 2812L, 1495L, 2279L, 1566L, 1571L, 3243L, 
3463L, 3446L, 4494L, 5554L, 2408L, 3205L, 1415L, 503L, 4475L, 
2991L, 6206L, 3917L, 3783L, 579L, 4765L, 5490L, 2332L, 3855L, 
334L, 279L, 4344L, 2040L, 3374L, 5118L, 5522L, 943L, 1384L, 4601L, 
4265L, 1661L, 4688L, 4689L, 4901L, 5189L, 3486L, 5768L, 2838L, 
1224L, 5894L, 797L, 64L, 5550L, 71L, 4872L, 3641L, 4625L, 3234L, 
4074L, 4193L, 4694L, 4910L, 6064L, 711L, 5573L, 2679L, 435L, 
3532L, 1943L, 5559L, 3315L, 3558L, 1329L, 3639L, 1315L, 3333L, 
1385L, 969L, 4171L, 4913L, 6416L, 3509L, 1493L, 3441L, 4746L, 
5616L, 4951L, 3169L, 4749L, 831L, 2960L, 1296L, 16L, 2343L, 1135L, 
3011L, 1561L, 2271L, 6274L, 174L, 3444L, 6017L, 3905L, 2256L, 
6176L, 2010L, 4810L, 390L, 1249L, 2519L, 5377L, 6018L, 5639L, 
5085L, 2620L, 5812L, 4687L, 1585L, 1728L, 2769L, 3270L, 4024L, 
4315L, 423L, 1338L, 2607L, 4817L, 2097L, 870L, 6315L, 904L, 2440L, 
4453L, 361L, 57L, 499L, 592L, 261L, 2635L, 2813L, 529L, 2855L, 
5575L, 2611L, 577L, 2758L, 4659L, 3844L, 460L, 5323L, 1192L, 
2380L, 272L, 381L, 4215L, 1872L, 5269L, 4364L, 897L, 5692L, 147L, 
1357L, 5217L, 5735L, 300L, 6237L, 2495L, 105L, 446L, 2340L, 998L, 
4142L, 612L, 6281L, 1582L, 1222L, 1890L, 166L, 1640L, 5590L, 
58L, 3018L, 142L, 3891L, 3186L, 4745L, 299L, 4523L, 5641L, 784L, 
1204L, 1686L, 1584L, 3400L, 2020L, 1845L, 1339L, 2362L, 3775L, 
4993L, 3140L, 6136L, 3744L, 3660L, 4153L, 2724L, 2882L, 606L, 
4553L, 2163L, 1866L, 6542L, 3836L, 439L, 1593L, 4147L, 1863L, 
1478L, 1836L, 5330L, 2317L, 6407L, 4020L, 6340L, 5530L, 4834L, 
4014L, 5586L, 6277L, 1131L, 4902L, 1407L, 5960L, 6548L, 5643L, 
4351L, 905L, 4831L, 1502L, 619L, 4279L, 6394L, 128L, 2750L, 933L, 
2526L, 4238L, 3399L, 659L, 1480L, 2368L, 2682L, 5147L, 6000L, 
416L, 1817L, 5850L, 2734L, 4140L, 6131L, 6076L, 5482L, 5680L, 
2259L, 2351L, 4757L, 4151L, 289L, 859L, 5292L, 5635L, 1138L, 
3254L, 798L, 2505L, 4556L, 1551L, 3940L, 4871L, 5242L, 418L, 
6498L, 260L, 5817L, 4388L, 4007L, 3834L, 5505L, 5628L, 6338L, 
761L, 5450L, 5683L, 285L, 6111L, 5526L, 3037L, 4L, 2593L, 3748L, 
1503L, 4305L, 3995L, 2808L, 5340L, 723L, 5026L, 3815L, 780L, 
5079L, 4068L, 819L, 5578L, 5309L, 5343L, 4748L, 5907L, 6230L, 
750L, 4398L, 1132L, 608L, 6299L, 42L, 5876L, 3563L, 2357L, 4928L, 
4651L, 3820L, 6556L, 2657L, 1072L, 6177L, 5854L, 1055L, 3019L, 
3226L, 1947L, 2649L, 2658L, 3980L, 4411L, 4809L, 5374L, 6171L, 
2297L, 4886L, 1136L, 3304L, 5831L, 6033L, 3996L, 5566L, 2274L, 
5844L, 4357L, 4184L, 3931L, 1742L, 1906L, 584L, 1180L, 5983L, 
2034L, 3948L, 2299L, 1073L, 4888L, 2482L, 5282L, 1443L, 2127L, 
4934L, 4823L, 5775L, 1885L, 1196L, 148L, 6078L, 6388L, 6283L, 
6387L, 4507L, 2845L, 6058L, 3802L, 6417L, 6221L, 2099L, 5433L, 
2409L, 4856L, 4206L, 6222L, 2927L, 2702L, 456L, 4939L, 4571L, 
5468L, 5040L, 2424L, 5272L, 6453L, 5051L, 4724L, 5896L, 2916L, 
1310L, 5210L, 5510L, 646L, 5657L, 814L, 6170L, 676L, 6462L, 5444L, 
1140L, 5464L, 5277L, 845L, 4103L, 6037L, 3394L, 5133L, 4308L, 
6330L, 3808L, 3992L, 5485L, 3267L, 2779L, 1673L, 3759L, 540L, 
63L, 3328L, 5014L, 6502L, 1702L, 183L, 2793L, 1387L, 1509L, 1104L, 
6117L, 2521L, 1616L, 1915L, 5086L, 2052L, 980L, 1808L, 3238L, 
1065L, 3380L, 5700L, 627L, 5914L, 2915L, 3048L, 3623L, 1123L, 
6095L, 1816L, 5820L, 4345L, 834L, 4729L, 4228L, 4196L, 4470L, 
1279L, 5591L, 1570L, 2116L, 4849L, 4395L, 226L, 476L, 1626L, 
5747L, 3529L, 2431L, 1781L, 6031L, 2284L, 3319L, 1572L, 258L, 
3268L, 3450L, 1602L, 6434L, 5241L, 3211L, 1457L, 973L, 5836L, 
4221L, 5546L, 511L, 1494L, 4660L, 4740L, 6022L, 3065L, 4671L, 
1235L, 4859L, 5285L, 6085L, 1835L, 246L, 3957L, 2888L, 6273L, 
4354L, 6334L, 1819L, 5608L, 5737L, 2086L, 1058L, 2646L, 816L, 
4892L, 962L, 6487L, 2038L, 4419L, 5027L, 1894L, 3495L, 587L, 
3206L, 2829L, 4782L, 3643L, 1092L, 4123L, 5749L, 2676L, 2893L, 
3014L, 38L, 1912L, 5211L, 2243L, 4058L, 1213L, 2605L, 2442L, 
1232L, 5918L, 4185L, 3302L, 1337L, 6362L, 5555L, 307L, 2301L, 
2233L, 937L, 3907L, 5225L, 5638L, 975L, 2251L, 1050L, 1491L, 
6382L, 5216L, 2451L, 5973L, 5968L, 5662L, 502L, 5915L, 2422L, 
4802L, 3790L, 3299L, 2436L, 2277L, 2446L, 1261L, 6100L, 3587L, 
2741L, 1789L, 3988L, 2954L, 673L, 5694L, 2920L, 3473L, 578L, 
5383L, 3635L, 2474L, 4929L, 2527L, 2379L, 2749L, 2919L, 4747L, 
1568L, 2770L, 3580L, 4304L, 5181L, 463L, 3725L, 3582L, 6360L, 
3340L, 3527L, 2487L, 5010L, 4628L, 3698L, 3776L, 1653L, 1242L, 
755L, 6249L, 4548L, 4715L, 2907L, 3603L, 5111L, 3679L, 4719L, 
5415L, 3942L, 3701L, 5062L, 6464L, 3886L, 4970L, 5863L, 4053L, 
3203L, 2152L, 5063L, 558L, 4078L, 1168L, 3739L, 1542L, 3839L, 
3160L, 6303L, 2109L, 1773L, 5431L, 2239L, 4065L, 4771L, 6126L, 
478L, 1101L, 4449L, 889L, 1234L, 2784L, 1710L, 453L, 1939L, 4598L, 
5976L, 3052L, 2723L, 1453L, 144L, 1011L, 347L, 2381L, 5726L, 
1098L, 3801L, 2205L, 5924L, 5627L, 4158L, 1323L, 2716L, 6020L, 
5811L, 2453L, 2576L, 1343L, 1320L, 599L, 4175L, 2525L, 4167L, 
728L, 2376L, 3965L, 5238L, 3838L, 5333L, 6010L, 3692L, 6235L, 
1547L, 6061L, 4914L, 523L, 6040L, 3971L, 5140L, 470L, 6180L, 
5213L, 1000L, 5703L, 464L, 17L, 2573L, 2548L, 4077L, 6232L, 4488L, 
4627L, 2826L, 5015L, 4984L, 1940L, 6304L, 1287L, 4968L, 4008L, 
4960L, 6471L, 3094L, 2265L, 3780L, 5842L, 1355L, 4387L, 1961L, 
3508L, 5247L, 1715L, 4510L, 2579L, 5276L, 1884L, 2056L, 572L, 
4258L, 5438L, 3359L, 4644L, 2303L, 322L, 5600L, 688L, 569L, 1143L, 
4504L, 1109L, 2366L, 2628L, 513L, 6001L, 3407L, 5020L, 1613L, 
5690L, 5180L, 4863L, 2050L, 2599L, 2516L, 3648L, 2714L, 4472L, 
5454L, 2338L, 3966L, 903L, 1241L, 2971L, 4947L, 4792L, 3717L, 
3221L, 5182L, 1006L, 6137L, 2480L, 1403L, 3797L, 5872L, 4249L, 
195L, 6063L, 1898L), class = "data.frame")

编辑:这是我起诉他模型的完整代码:

library(caret)
## custom evaluation metric function
my_summary  <- function(data, lev = NULL, model = NULL){
  a1 <- defaultSummary(data, lev, model)
  b1 <- twoClassSummary(data, lev, model)
  c1 <- prSummary(data, lev, model)
  out <- c(a1, b1, c1)
  out}

## tuning & parameters
set.seed(123)
train_control <- trainControl(
  method = "cv",
  number = 5,
  savePredictions = TRUE,
  verboseIter = TRUE,
  classProbs = TRUE,
  summaryFunction = my_summary
)

linear_model = train(
  x = select(training_data, Avg_Load_Time),
  y = target,
  trControl = train_control,
  method = "glm", # logistic regression
  family = "binomial",
  metric = "AUC"
)

运行此程序后,我收到警告消息。

1个回答

我查看了您的数据,发现异常值非常偏斜。因此,您没有完美的分离,但警告正在发生,因为一些极端观察预测的概率与 1 无法区分。

如果您将模型拟合到 avg_load_time 的日志中,您将不会收到错误(我在您的示例数据上对此进行了测试)。

这个答案解释了正在发生的事情:逻辑回归中的完全分离问题(在R中)