我制作了以下模型:
>lmer(TotalPayoff~PgvnD*Type+Type*Asym+PgvnD*Asym+Game*Type+Game*PgvnD+Game*Asym+
(1|Subject)+(1|Pairing),REML=FALSE,data=table1)->m1
PgvnD=A percentage (numeric)
Asym= a factor 0 or 1
Type=a factor 1 or 2
Game= a factor 1 or 2
从这个模型中,条款Type和Game被PgvnD:Asym证明是显着的从模型中删除。PgvnD并且Asym本身并不重要,但由于它们之间的相互作用而留在模型中。该模型的总结如下;
> m7
Linear mixed model fit by maximum likelihood
Formula: TotalPayoff ~ Type + PgvnD * Asym + Game + (1 | Subject) + (1 |Pairing)
Data: table1
AIC BIC logLik deviance REMLdev
1014 1038 -497.8 995.6 964.4
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 0.000 0.0000
Pairing (Intercept) 716.101 26.7601
Residual 89.364 9.4533
Number of obs: 113, groups: Subject, 73; Pairing, 61
Fixed effects:
Estimate Std. Error t value
(Intercept) 81.727 6.332 12.907
Type2 7.926 2.852 2.779
PgvnD -8.466 7.554 -1.121
Asym1 -12.167 7.583 -1.604
Game2 15.374 7.147 2.151
PgvnD:Asym1 26.618 9.710 2.741
Correlation of Fixed Effects:
(Intr) Type2 PgvnD Asym1 Game2
Type2 -0.188
PgvnD -0.218 -0.038
Asym1 -0.620 0.081 0.189
Game2 -0.483 0.009 -0.010 -0.015
PgvnD:Asym1 0.233 -0.267 -0.766 -0.328 -0.011
我是否正确解释了这些结果?
TotalPayoffwhenType=1比 in高,when比 whenType=2也高。game=2game=1- 也
TotalPayoff随着PgvnDifAsym=1而不是 if显着增加ASym=0(由显着交互项但不显着的单个项表示)。
我还注意到Subject随机效应的 SD 和方差为 0。然后可以将其从模型中删除吗?这到底是什么意思?