我目前正在使用 mgcv 包在 R 中使用逻辑半参数模型。模型的输出给出了标准的对数优势系数;然而,审阅者要求边际效应(就像 Stata 中使用边距命令的那样)。我想做平均边际效应(尽管,平均边际效应——分类协变量的模式——至少是一个开始)。
我想知道是否有人在 R 中为使用 gam() 函数的模型实现了这一点。我有一个相当大的数据集(120 万个观测值,大量离散和连续协变量,以及 2,000 个人的固定效应)。考虑到几个连续协变量的非参数处理,这些估计是否容易处理?任何信息都有帮助。
这是我正在使用的内容,尽管在尝试为效果执行引导式 SE 时出现错误(来自这个有用的站点 probitlogit-marginal-effects-in-r-2/)。我不确定这如何处理非参数估计的平滑(但也许这些并不重要,因为它使用的是“预测”功能?):
mfxboot <- function(modform,dist,data,boot=1000,digits=3){ #dist is the distribution choice of logit or probit
require(mgcv)
x <- gam(modform, family=binomial(link=dist),method="GCV.Cp",data)
# get marginal effects
pdf <- ifelse(dist=="probit",
mean(dnorm(predict(x, type = "link")))
mean(dlogis(predict(x, type = "link")))
marginal.effects <- pdf*coef(x)
bootvals <- matrix(rep(NA,boot*length(coef(x))), nrow=boot)
set.seed(1111)
for(i in 1:boot){
samp1 <- data[sample(1:dim(data)[1],replace=T,dim(data)[1]),]
x1 <- gam(modform, family=binomial(link=dist),method="GCV.Cp",samp1)
pdf1 <- ifelse(dist=="probit",
mean(dnorm(predict(x1, type = "link"))),
mean(dlogis(predict(x1, type = "link"))))
bootvals[i,] <- pdf1*coef(x1)
}
res <- cbind(marginal.effects,apply(bootvals,2,sd),marginal.effects/apply(bootvals,2,sd))
if(names(x$coefficients[1])=="(Intercept)"){
res1 <- res[2:nrow(res),]
res2 <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep=""),res1)),nrow=dim(res1)[1])
rownames(res2) <- rownames(res1)
} else {
res2 <- matrix(as.numeric(sprintf(paste("%.",paste(digits,"f",sep=""),sep="")),nrow=dim(res)[1]))
rownames(res2) <- rownames(res)
}
colnames(res2) <- c("marginal.effect","standard.error","z.ratio")
return(res2)
}