我想拟合一个没有随机效应之间相关项的模型lme
。在lmer
这方面是相当直截了当的......
# lmer without correlation term
m1 <- lmer(distance ~ (1|Subject) + age + (0+age|Subject) + Sex, data = Orthodont)
VarCorr(m1)
# Groups Name Std.Dev.
# Subject (Intercept) 1.474105
# Subject.1 age 0.099979
# Residual 1.402591
我想我可以使用lme
以下规范删除相关项...
# lme without correlation term?
m2 <- lme(distance ~ age + Sex, data = Orthodont, random = list(~ 1 | Subject, ~-1+ age | Subject))
VarCorr(m2)
# Variance StdDev
# Subject = pdLogChol(1)
# (Intercept) 2.172946296 1.47409169
# Subject = pdLogChol(-1 + age)
# age 0.009996006 0.09998003
# Residual 1.967260819 1.40259075
我并不完全相信这些是相同的模型,部分原因是我找不到任何详细说明如何指定这种特定形式的资源,部分原因是输出print
对我来说有点神秘......
m2
# Linear mixed-effects model fit by REML
# Data: Orthodont
# Log-restricted-likelihood: -218.3227
# Fixed: distance ~ age + Sex
# (Intercept) age SexFemale
# 17.5806928 0.6601852 -2.0117005
#
# Random effects:
# Formula: ~1 | Subject
# (Intercept)
# StdDev: 1.474092
#
# Formula: ~-1 + age | Subject %in% Subject
# age Residual
# StdDev: 0.09998003 1.402591
#
# Number of Observations: 108
# Number of Groups:
# Subject Subject.1 %in% Subject
# 27 27
特别是Subject %in% Subject
指的是什么?为什么残差被视为第二个随机效应项的一部分?