我正在尝试分析一些物种的一些计数数据(“Tetab”表示以下代码中的物种)。咨询了一位比我更懂统计的朋友,他建议用泊松回归分析数据,然后利用置信区间来确定哪些处理导致计数反应显着不同。这对于我分析的其他两个物种来说效果很好,但我得到了标题中列出的错误。比较代码,不同物种的分析中的一切都是相同的,所以我假设它与数据有关——也因为这个物种是唯一不能运行零膨胀泊松回归的物种。其他两个物种的总计数数据是 33 和 47,但 Tetab 只有 22。这可能与错误有关吗?有什么解决方法吗?数据的方差是异质的,所以我不能使用 Kruskal-Wallis 或多重比较。
> Tetab.pglm <- glm(Count ~ Treatment, data = spond.spp.list[['Tetab']], family = poisson)
> Tetab.zpglm <- zeroinfl(Count ~ Treatment, data = spond.spp.list[['Tetab']], dist = "poisson")
Error in solve.default(as.matrix(fit$hessian)) :
system is computationally singular: reciprocal condition number = 1.63511e-19
> summary(Tetab.pglm)
Call:
glm(formula = Count ~ Treatment, family = poisson, data = spond.spp.list[["Tetab"]])
Deviance Residuals:
Min 1Q Median 3Q Max
-1.35873 -0.00006 -0.00006 0.07899 2.36154
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.030e+01 4.311e+03 -0.005 0.996
Treatment2 2.004e+01 4.311e+03 0.005 0.996
Treatment3 9.922e-09 6.096e+03 0.000 1.000
Treatment4 2.022e+01 4.311e+03 0.005 0.996
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 54.484 on 51 degrees of freedom
Residual deviance: 23.804 on 48 degrees of freedom
AIC: 68.297
Number of Fisher Scoring iterations: 18
> exp(coef(Tetab.zpglm))
Error in coef(Tetab.zpglm) : object 'Tetab.zpglm' not found
> exp(coef(Tetab.pglm))
(Intercept) Treatment2 Treatment3 Treatment4
1.522998e-09 5.050767e+08 1.000000e+00 6.060920e+08
> exp(confint(Tetab.zpglm))
Error in confint(Tetab.zpglm) : object 'Tetab.zpglm' not found
> exp(confint(Tetab.pglm))
Waiting for profiling to be done...
Error: no valid set of coefficients has been found: please supply starting values
In addition: Warning messages:
1: glm.fit: fitted rates numerically 0 occurred
2: glm.fit: fitted rates numerically 0 occurred
3: glm.fit: fitted rates numerically 0 occurred
4: glm.fit: fitted rates numerically 0 occurred
5: glm.fit: fitted rates numerically 0 occurred
6: glm.fit: fitted rates numerically 0 occurred
7: glm.fit: fitted rates numerically 0 occurred
8: glm.fit: fitted rates numerically 0 occurred
9: glm.fit: fitted rates numerically 0 occurred
感谢您的任何帮助,您可以提供!最大限度
这是数据集:
Species Date Site Treatment Count
Tetab 20160602 2 1 0
Tetab 20160602 2 2 1
Tetab 20160602 2 3 0
Tetab 20160602 2 4 1
Tetab 20160606 1 1 0
Tetab 20160606 1 2 1
Tetab 20160606 1 3 0
Tetab 20160606 1 4 0
Tetab 20160606 2 1 0
Tetab 20160606 2 2 1
Tetab 20160606 2 3 0
Tetab 20160606 2 4 0
Tetab 20160607 2 1 0
Tetab 20160607 2 2 0
Tetab 20160607 2 3 0
Tetab 20160607 2 4 1
Tetab 20160609 1 1 0
Tetab 20160609 1 2 0
Tetab 20160609 1 3 0
Tetab 20160609 1 4 2
Tetab 20160609 2 1 0
Tetab 20160609 2 2 0
Tetab 20160609 2 3 0
Tetab 20160609 2 4 1
Tetab 20160610 1 1 0
Tetab 20160610 1 2 1
Tetab 20160610 1 3 0
Tetab 20160610 1 4 0
Tetab 20160610 2 1 0
Tetab 20160610 2 2 1
Tetab 20160610 2 3 0
Tetab 20160610 2 4 0
Tetab 20160620 1 1 0
Tetab 20160620 1 2 1
Tetab 20160620 1 3 0
Tetab 20160620 1 4 1
Tetab 20160620 2 1 0
Tetab 20160620 2 2 1
Tetab 20160620 2 3 0
Tetab 20160620 2 4 4
Tetab 20160622 1 1 0
Tetab 20160622 1 2 0
Tetab 20160622 1 3 0
Tetab 20160622 1 4 1
Tetab 20160622 2 1 0
Tetab 20160622 2 2 2
Tetab 20160622 2 3 0
Tetab 20160622 2 4 1
Tetab 20160624 2 1 0
Tetab 20160624 2 2 1
Tetab 20160624 2 3 0
Tetab 20160624 2 4 0