我正在使用回归不连续设计 (RDD) 的参数方法和非参数(局部线性回归)方法来计算使用 Stata 的治疗效果。
为了获得用户编写rd
的第 102 届国会数据,我这样做:
net get rd
use votex
局部线性方法:
rd lne d,bw(0.20) mbw(100) ker(rec)
Two variables specified; treatment is
assumed to jump from zero to one at Z=0.
Assignment variable Z is d
Treatment variable X_T unspecified
Outcome variable y is lne
Estimating for bandwidth .2
------------------------------------------------------------------------------
lne | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lwald | -.1046939 .1147029 -0.91 0.361 -.3295075 .1201197
-----------------------------------------------------------------------------
据我了解,这相当于以下内容:
gen win_d=win*d
reg lne d win win_d if d>=-0.2 & d<=0.2
Source | SS df MS Number of obs = 267
-------------+------------------------------ F( 3, 263) = 0.43
Model | .271662326 3 .090554109 Prob > F = 0.7339
Residual | 55.7885045 263 .212123591 R-squared = 0.0048
-------------+------------------------------ Adj R-squared = -0.0065
Total | 56.0601668 266 .210752507 Root MSE = .46057
------------------------------------------------------------------------------
lne | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
d | .8450601 .7855123 1.08 0.283 -.7016333 2.391753
win | -.1046939 .1257913 -0.83 0.406 -.3523801 .1429923
win_d | -.8707605 1.048807 -0.83 0.407 -2.935887 1.194366
_cons | 21.44195 .0925378 231.71 0.000 21.25974 21.62415
------------------------------------------------------------------------------
然而,当我们使用参数方法(假设使用一阶多项式)时,我们会使用所有观察值。但是,我想看看如何将参数方法与非参数方法进行比较,观察次数与非参数方法相同。所以,我这样做:
reg lne d win if d>=-0.2 & d<=0.2
Source | SS df MS Number of obs = 267
-------------+------------------------------ F( 2, 264) = 0.30
Model | .125446108 2 .062723054 Prob > F = 0.7440
Residual | 55.9347207 264 .211873942 R-squared = 0.0022
-------------+------------------------------ Adj R-squared = -0.0053
Total | 56.0601668 266 .210752507 Root MSE = .4603
------------------------------------------------------------------------------
lne | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
d | .3566172 .5201877 0.69 0.494 -.6676274 1.380862
win | -.0964314 .1253232 -0.77 0.442 -.3431916 .1503288
_cons | 21.39136 .0696112 307.30 0.000 21.2543 21.52843
------------------------------------------------------------------------------
我担心的是为什么非参数方法结果 (-.1046939) 与参数方法 (-.0964314) 不同,尽管我们对两者使用相同的观察结果。