编辑:已经得到问题 4(编程)的答案。问题将留在关于在块中设计的因子实验和邓肯检验的理论问题上。
给定一个以块为单位设计的实验,并采用具有两个自变量的全因子方案,每个变量具有两个水平 (2 x 2):
Factor 1: Genetic Material (A and B);
Factor 2" Fertilizer (C and D);
Number of blocks: 3;
Repetition of each treatment inside a block: 2;
Attribute of interest (DV): height (H);
这是我的数据 [in R] 的可重现示例:
block_number = c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3)
genetic_material = c("A","A","A","A","B","B","B","B","A","A","A","A","B","B","B","B","A","A","A","A","B","B","B","B")
fertilizer = c("C","C","D","D","C","C","D","D","C","C","D","D","C","C","D","D","C","C","D","D","C","C","D","D")
repetition_inside_block = c(1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2)
H = c(23,34,21,12,45,23,44,21,11,12,34,23,43,21,14,16,24,32,52,11,32,25,21,23)
data = data.frame(cbind(block_number,genetic_material,fertilizer,repetition_inside_block,H))
在这种类型的实验中,有什么好的做法可以分析不同水平的因素之间的均值差异?
我计划使用Duncan 的新多范围检验来比较每个变量内部水平之间和变量之间的均值,但我不确定它是否是最佳选择。
下面的句子是什么意思?
有一些批评者依赖邓肯的测试,如下所示:
“Duncan 的测试无法控制指定 alpha 级别的家庭错误率。它比其他后期测试更强大,但这只是因为它没有正确控制错误率”
引用来源:R“agricolae”包,
Duncan.test函数。使用邓肯测试,我是否走在正确的轨道上?如果不是,在这种情况下,什么是更好的选择?
我知道这个检验被广泛用于农业实验(这是我的情况),并且与 Tukey 检验相比,拒绝零假设(均值相等)的机会更大。
对于上述数据集,我如何在 R. 上运行 Duncan 测试?**
回答最后一个问题:我使用包ExpDes
fat2.rbd1中的函数(它特定于全因子实验 2 x 2)得到它。

