我有四种不同管理类型(A、B、C、D)的相机陷阱数据。我想知道这些管理类型是否对不同哺乳动物食草动物物种的丰度有影响。
对于某些物种,在一种管理类型中只有零,这使分析变得复杂。
我该怎么办?我知道我可以使用贝叶斯方法,但在我开始之前,我想知道是否有一种变通方法可以让我使用常客方法进行这种分析。
斑马的数据:
counts <- (c(67, 194, 155, 135, 146, 257, 114, 134, 111, 87,
62, 67, 85, 89, 63, 86, 97, 44, 0, 0, 0, 0, 0, 0))
management <- rep(LETTERS[1:4], each = 6)
该模型:
library(MASS)
model <- glm.nb(counts ~ management)
summary(model)
输出显示 D 组有一个巨大的标准错误,只有 0:
Call:
glm.nb(formula = counts ~ management, init.theta =
11.27380856,
link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.42149 -0.35526 -0.00006 0.45934 1.70106
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.0689 0.1258 40.286 < 2e-16 ***
managementB -0.5063 0.1799 -2.815 0.00488 **
managementC -0.7208 0.1810 -3.982 6.84e-05 ***
managementD -25.3715 6344.9393 -0.004 0.99681
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(11.2738) family taken to be 1)
Null deviance: 339.360 on 23 degrees of freedom
Residual deviance: 18.139 on 20 degrees of freedom
AIC: 185.92
Number of Fisher Scoring iterations: 1
Theta: 11.27
Std. Err.: 4.11
2 x log-likelihood: -175.918
它也无法向我显示“D”与所有其他组之间的任何差异。成对比较:
library(multcomp)
contrasts <- c(
"A - B = 0",
"A - C = 0",
"A - D = 0",
"B - C = 0",
"B - D = 0",
"C - D = 0")
H <- glht(model, linfct = mcp(management = contrasts))
summary(H)
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: User-defined Contrasts
Fit: glm.nb(formula = counts ~ management, init.theta =
11.27380856,
link = log)
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
A - B == 0 0.5063 0.1799 2.815 0.018355 *
A - C == 0 0.7208 0.1810 3.982 0.000271 ***
A - D == 0 25.3715 6344.9393 0.004 1.000000
B - C == 0 0.2145 0.1829 1.173 0.597425
B - D == 0 24.8652 6344.9393 0.004 1.000000
C - D == 0 24.6507 6344.9393 0.004 1.000000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)


