我正在用 R 运行多元线性回归。
mod=lm(varP ~ var1 +var2+var3+var4)
表格是:
all:
lm(formula = varP ~ var1 + var2 + var3 + var4)
Residuals:
Min 1Q Median 3Q Max
-4.9262 -0.6985 0.0472 0.7319 4.3305
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.700823 0.084737 8.271 1.45e-15 ***
var1 1.080172 0.175348 6.160 1.59e-09 ***
var2 -0.057803 0.007777 -7.432 5.25e-13 ***
var3 -9.924772 4.268235 -2.325 0.0205 *
var4 -0.015104 0.001290 -11.710 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.139 on 460 degrees of freedom
Multiple R-squared: 0.657, Adjusted R-squared: 0.654
F-statistic: 220.3 on 4 and 460 DF, p-value: < 2.2e-16
这意味着我的模型解释了 65.4% 的方差。但是现在,我想确定每个预测变量的重要性。
我正在使用:
lm.sumSquares(mod)
dR-sqr 是否与解释这一重要性相关?
SS dR-sqr pEta-sqr df F p-value
(Intercept) 88.73054 0.0510 0.1294 1 68.4015 0.0000
var4 177.88026 0.1022 0.2296 1 137.1262 0.0000
var2 71.65234 0.0412 0.1072 1 55.2361 0.0000
var1 49.22579 0.0283 0.0762 1 37.9477 0.0000
var3 7.01377 0.0040 0.0116 1 5.4069 0.0205
Error (SSE) 596.71237 NA NA 460 NA NA
Total (SST) 1739.76088 NA NA NA NA NA