有没有办法从 4x4 矩阵计算 X 和 Y 轴上的 3D 旋转

IT技术 javascript math matrix rotation euler-angles
2021-02-12 03:41:13

首先,我根本不是数学专家。请容忍我的数学错误并在必要时纠正我,我很乐意学习。

我有一个立方体,它使用带有变换的 css 动画旋转:matrix3d(4x4)。我还可以手动旋转立方体,将用户操作转换为相同的 matrix3d 转换。

当用户停止从用户离开它的地方开始交互时,我想要的是一个带有 css 的旋转立方体。这是我通过获取多维数据集的变换 matrix3d 值并使用乘法动态设置 css 的关键帧来成功完成的事情。

然而,当用户开始与立方体交互时,立方体会跳转到它最后一个已知的手动旋转点并从那里继续,因为我无法弄清楚如何从 4x4 矩阵获得 X 和 Y 轴上的旋转。

我目前正在使用以下库Rematrix,它可以帮助我从手动旋转到 css 旋转,如上所述。

我一直在研究关于欧拉的文章,以及如何从欧拉到矩阵,反之亦然,但就像我之前提到的,这是我缺乏数学知识阻碍我思考的地方。我似乎无法弄清楚。

作为参考,这里有一些我读过的文章来尝试解决我的问题。

最后一个来源对我来说最有意义,但是,如果我是对的,在这种情况下没有用,因为它是关于 2D 转换,而不是 3D。

我通过以下方式获得当前的 matrix3d:

const style = getComputedStyle(this.element).transform
const matrix = Rematrix.parse(style)

对于手动旋转,我使用基于用户鼠标位置(positionY、positionX)的矩阵乘法。

const r1 = Rematrix.rotateX(this.positionY)
const r2 = Rematrix.rotateY(this.positionX)

const transform = [r1, r2].reduce(Rematrix.multiply)

this.element.style[userPrefix.js + 'Transform'] = Rematrix.toString(transform)

从手动到 css 旋转,我使用以下功能:

const setCssAnimationKeyframes = (lastTransform, animationData) => {
  const rotationIncrement = 90

  let matrixes = []

  for (let i = 0; i < 5; i++) {
    const rX = Rematrix.rotateX(rotationIncrement * i)
    const rY = Rematrix.rotateY(rotationIncrement * i)

    const matrix = [lastTransform, rX, rY].reduce(Rematrix.multiply);

    matrixes.push(matrix)
  }

  animationData.innerHTML = `
    @keyframes rotateCube {
      0% {
        transform: ${Rematrix.toString(matrixes[0])};
      }
      25% {
        transform: ${Rematrix.toString(matrixes[1])};
      }
      50% {
        transform: ${Rematrix.toString(matrixes[2])};
      }
      75% {
        transform: ${Rematrix.toString(matrixes[3])}};
      }
      100% {
        transform: ${Rematrix.toString(matrixes[4])};
      }
    }
  `;
}

请提供任何有用信息的答案或评论。尽管这是最受欢迎的,但我不希望您提供一个完整的代码示例。任何形式的任何有用信息都非常感谢。

1个回答

先读:

因为我使用那里的术语。

好吧,我懒得将所有内容与我的环境等同起来,但基于此:

m对于任何旋转顺序,生成的 3D 旋转子矩阵将始终具有以下温度:

(+/-)sin(a)
(+/-)sin(b)cos(a)
(+/-)cos(b)cos(a)
(+/-)sin(c)cos(a)
(+/-)cos(c)cos(a)

只有它们的符号和位置会随着变换顺序和约定而改变。因此,要识别它们,请执行以下操作:

  1. 让我们先设置一些重要的欧拉角

    他们的|sin|,|cos|值必须不同,所以 6 个值都不相同,否则这将不起作用!!!

    我选择了这些:

    ex = 10 [deg]
    ey = 20 [deg]
    ez = 30 [deg]
    
  2. 计算旋转矩阵 m

    所以按顺序在单位矩阵上应用 3 次欧拉旋转。在我的设置中,结果矩阵如下所示:

    double m[16] = 
     { 
      0.813797652721405, 0.543838143348694,-0.204874128103256, 0, // Xx,Xy,Xz,0.0
     -0.469846308231354, 0.823172926902771, 0.318795770406723, 0, // Yx,Yy,Yz,0.0
      0.342020153999329,-0.163175910711288, 0.925416529178619, 0, // Zx,Zy,Zz,0.0
      0                , 0                , 0                , 1  // Ox,Oy,Oz,1.0
     };
    

    请注意,我使用 OpenGL 约定,基向量X,Y,Z和原点O由矩阵线表示,矩阵是直接的。

  3. 识别(+/-)sin(a)

    a可以是任何欧拉角度,使得打印sin他们全部的:

    sin(ex) = 0.17364817766693034885171662676931
    sin(ey) = 0.34202014332566873304409961468226
    sin(ez) = 0.5
    

    现在看,m[8] = sin(ey)所以我们找到了我们的热水器……现在我们知道了:

    ey = a = asin(m[8]);
    
  4. 识别(+/-)???(?)*cos(a)热量

    只需为未使用的角度打印 cos(?)*cos(ey) 。所以如果ey是 20 度,我打印 10 度和 30 度...

    sin(10 deg)*cos(20 deg) = 0.16317591116653482557414168661534
    cos(10 deg)*cos(20 deg) = 0.92541657839832335306523309767123
    sin(30 deg)*cos(20 deg) = 0.46984631039295419202705463866237
    cos(30 deg)*cos(20 deg) = 0.81379768134937369284469321724839
    

    当我们m再次查看时,我们可以交叉匹配:

    sin(ex)*cos(ey) = 0.16317591116653482557414168661534 = -m[9]
    cos(ex)*cos(ey) = 0.92541657839832335306523309767123 = +m[10]
    sin(ez)*cos(ey) = 0.46984631039295419202705463866237 = -m[4]
    cos(ez)*cos(ey) = 0.81379768134937369284469321724839 = +m[0]
    

    从中我们可以计算角度......

    sin(ex)*cos(ey) = -m[ 9]
    cos(ex)*cos(ey) = +m[10]
    sin(ez)*cos(ey) = -m[ 4]
    cos(ez)*cos(ey) = +m[ 0]
    ------------------------
    sin(ex) = -m[ 9]/cos(ey)
    cos(ex) = +m[10]/cos(ey)
    sin(ez) = -m[ 4]/cos(ey)
    cos(ez) = +m[ 0]/cos(ey)
    

    所以最后:

    ---------------------------------------------
    ey = asin(m[8]);
    ex = atan2( -m[ 9]/cos(ey) , +m[10]/cos(ey) )
    ez = atan2( -m[ 4]/cos(ey) , +m[ 0]/cos(ey) )
    ---------------------------------------------
    

就是这样。如果你有不同的布局/约定/转换顺序,这种方法仍然应该有效......只有索引和符号发生了变化。这是我在(订单)上测试的小型C++/VCL OpenGL示例X,Y,Z

//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "Unit1.h"
#include "gl_simple.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
bool _redraw=true;                  // need repaint?

//---------------------------------------------------------------------------
double m[16]=               // uniform 4x4 matrix
    {
    1.0,0.0,0.0,0.0,        // Xx,Xy,Xz,0.0
    0.0,1.0,0.0,0.0,        // Yx,Yy,Yz,0.0
    0.0,0.0,1.0,0.0,        // Zx,Zy,Zz,0.0
    0.0,0.0,0.0,1.0         // Ox,Oy,Oz,1.0
    };
double e[3]={0.0,0.0,0.0};  // euler angles x,y,z order
//---------------------------------------------------------------------------
const double deg=M_PI/180.0;
const double rad=180.0/M_PI;
void matrix2euler(double *e,double *m)
    {
    double c;
    e[1]=asin(+m[ 8]);
    c=cos(e[1]); if (fabs(c>1e-20)) c=1.0/c; else c=0.0;
    e[0]=atan2(-m[ 9]*c,m[10]*c);
    e[2]=atan2(-m[ 4]*c,m[ 0]*c);
    }
//---------------------------------------------------------------------------
void gl_draw()
    {
    _redraw=false;
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    glMatrixMode(GL_PROJECTION);
//  glLoadIdentity();
    glMatrixMode(GL_TEXTURE);
    glLoadIdentity();
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glTranslated(0.0,0.0,-10.0);    // some distance from camera ...

    glDisable(GL_DEPTH_TEST);
    glDisable(GL_TEXTURE_2D);

    int i;
    // draw source matrix:
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    glTranslated(-1.0,0.0,0.0); // source matrix on the left
    glMultMatrixd(m);
    glBegin(GL_LINES);
    glColor3f(1.0,0.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3d(1.0,0.0,0.0);
    glColor3f(0.0,1.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3d(0.0,1.0,0.0);
    glColor3f(0.0,0.0,1.0); glVertex3d(0.0,0.0,0.0); glVertex3d(0.0,0.0,1.0);
    glEnd();
    glPopMatrix();

    // draw source matrix:
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    glTranslated(m[12],m[13],m[14]);    // source matrix in the middle
    glBegin(GL_LINES);
    glColor3f(1.0,0.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3dv(m+0);
    glColor3f(0.0,1.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3dv(m+4);
    glColor3f(0.0,0.0,1.0); glVertex3d(0.0,0.0,0.0); glVertex3dv(m+8);
    glEnd();
    glPopMatrix();

    // draw euler angles
    matrix2euler(e,m);
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    glTranslated(+1.0,0.0,0.0); // euler angles on the right
    glRotated(e[0]*rad,1.0,0.0,0.0);
    glRotated(e[1]*rad,0.0,1.0,0.0);
    glRotated(e[2]*rad,0.0,0.0,1.0);
    glBegin(GL_LINES);
    glColor3f(1.0,0.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3d(1.0,0.0,0.0);
    glColor3f(0.0,1.0,0.0); glVertex3d(0.0,0.0,0.0); glVertex3d(0.0,1.0,0.0);
    glColor3f(0.0,0.0,1.0); glVertex3d(0.0,0.0,0.0); glVertex3d(0.0,0.0,1.0);
    glEnd();
    glPopMatrix();

//  glFlush();
    glFinish();
    SwapBuffers(hdc);
    }
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
    {
    gl_init(Handle);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glRotated(10.0,1.0,0.0,0.0);
    glRotated(20.0,0.0,1.0,0.0);
    glRotated(30.0,0.0,0.0,1.0);
    glGetDoublev(GL_MODELVIEW_MATRIX,m);
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormDestroy(TObject *Sender)
    {
    gl_exit();
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormPaint(TObject *Sender)
    {
    gl_draw();
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::Timer1Timer(TObject *Sender)
    {
    if (_redraw) gl_draw();
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormResize(TObject *Sender)
    {
    gl_resize(ClientWidth,ClientHeight);
    _redraw=true;
    }
//---------------------------------------------------------------------------
void __fastcall TForm1::FormKeyDown(TObject *Sender, WORD &Key, TShiftState Shift)
    {
//  Caption=Key;
    const double da=5.0;
    if (Key==37){ _redraw=true; glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadMatrixd(m); glRotated(+da,0.0,1.0,0.0); glGetDoublev(GL_MODELVIEW_MATRIX,m); glPopMatrix(); }
    if (Key==39){ _redraw=true; glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadMatrixd(m); glRotated(-da,0.0,1.0,0.0); glGetDoublev(GL_MODELVIEW_MATRIX,m); glPopMatrix(); }
    if (Key==38){ _redraw=true; glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadMatrixd(m); glRotated(+da,1.0,0.0,0.0); glGetDoublev(GL_MODELVIEW_MATRIX,m); glPopMatrix(); }
    if (Key==40){ _redraw=true; glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadMatrixd(m); glRotated(-da,1.0,0.0,0.0); glGetDoublev(GL_MODELVIEW_MATRIX,m); glPopMatrix(); }
    }
//---------------------------------------------------------------------------

它唯一重要的东西是顺序matrix2euler将矩阵转换m为欧拉角的函数x,y,z它呈现 3 个坐标系轴。左边m用作模型视图矩阵,中间是m使用恒等模型视图的基向量,右边是由计算的欧拉角构造的模型视图......

所有 3 个都应该匹配。如果左侧和中间不匹配,那么您将获得不同的矩阵或布局约定。

这里预览(10,20,30) [deg]测试用例:

预览

即使经过多次旋转(箭头键),它仍然匹配......

gl_simple.h可以在这里找到:

附注。根据平台/环境,计算可能需要一些边缘情况处理,例如asin大于 的舍入幅度1,除以零等。也atan2有它的怪癖......

[Edit1] 这是自动完成所有这些的终极 C++ 示例:

//---------------------------------------------------------------------------
enum _euler_cfg_enum
    {
    _euler_cfg_a=0,
    _euler_cfg_b,
    _euler_cfg_c,
    _euler_cfg__sina,
    _euler_cfg_ssina,
    _euler_cfg__sinb_cosa,
    _euler_cfg_ssinb_cosa,
    _euler_cfg__cosb_cosa,
    _euler_cfg_scosb_cosa,
    _euler_cfg__sinc_cosa,
    _euler_cfg_ssinc_cosa,
    _euler_cfg__cosc_cosa,
    _euler_cfg_scosc_cosa,
    _euler_cfgs
    };
//---------------------------------------------------------------------------
void matrix2euler_init(double *e,double *m,int *cfg)    // cross match euler angles e[3] and resulting m[16] transform matrix into cfg[_euler_cfgs]
    {
    int i,j;
    double a,tab[4];
    const double _zero=1e-6;
    for (i=0;i<_euler_cfgs;i++) cfg[i]=-1;      // clear cfg
    // find (+/-)sin(a)
    for (i=0;i<3;i++)                           // test all angles in e[]
        {
        a=sin(e[i]);
        for (j=0;j<16;j++)                      // test all elements in m[]
         if (fabs(fabs(a)-fabs(m[j]))<=_zero)   // find match in |m[j]| = |sin(e[i])|
            {                                   // store configuration
            cfg[_euler_cfg_a]=i;            
            cfg[_euler_cfg__sina]=j;
            cfg[_euler_cfg_ssina]=(a*m[j]<0.0);
            j=-1; break;
            }
        if (j<0){ i=-1; break; }                // stop on match found
        }
    if (i>=0){ cfg[0]=-1; return;   }           // no match !!!
    // find (+/-)???(?)*cos(a)
    a=cos(e[cfg[_euler_cfg_a]]);
    i=0; if (i==cfg[_euler_cfg_a]) i++; tab[0]=sin(e[i])*a; tab[1]=cos(e[i])*a; cfg[_euler_cfg_b]=i;
    i++; if (i==cfg[_euler_cfg_a]) i++; tab[2]=sin(e[i])*a; tab[3]=cos(e[i])*a; cfg[_euler_cfg_c]=i;

    for (i=0;i<4;i++)
        {
        a=tab[i];
        for (j=0;j<16;j++)                      // test all elements in m[]
         if (fabs(fabs(a)-fabs(m[j]))<=_zero)   // find match in |m[j]| = |tab[i]|
            {                                   // store configuration
            cfg[_euler_cfg__sinb_cosa+i+i]=j;
            cfg[_euler_cfg_ssinb_cosa+i+i]=(a*m[j]<0.0);
            j=-1; break;
            }
        if (j>=0){ cfg[0]=-1; return;   }       // no match !!!
        }
    }
//---------------------------------------------------------------------------
void matrix2euler(double *e,double *m,int *cfg) // compute euler angles e[3] from transform matrix m[16] using confing cfg[_euler_cfgs]
    {
    double c;
    //-----angle------         --------------sign--------------     ----------index----------
    e[cfg[_euler_cfg_a]]=asin ((cfg[_euler_cfg_ssina]?-1.0:+1.0) *m[cfg[_euler_cfg__sina     ]]);
    c=cos(e[cfg[_euler_cfg_a]]); if (fabs(c>1e-20)) c=1.0/c; else c=0.0;
    e[cfg[_euler_cfg_b]]=atan2((cfg[_euler_cfg_ssinb_cosa]?-c:+c)*m[cfg[_euler_cfg__sinb_cosa]],
                               (cfg[_euler_cfg_scosb_cosa]?-c:+c)*m[cfg[_euler_cfg__cosb_cosa]]);
    e[cfg[_euler_cfg_c]]=atan2((cfg[_euler_cfg_ssinc_cosa]?-c:+c)*m[cfg[_euler_cfg__sinc_cosa]],
                               (cfg[_euler_cfg_scosc_cosa]?-c:+c)*m[cfg[_euler_cfg__cosc_cosa]]);
    }
//---------------------------------------------------------------------------

用法:

const double deg=M_PI/180.0;
const double rad=180.0/M_PI;
// variables
double e[3],m[16];
int euler_cfg[_euler_cfgs];
// init angles
e[0]=10.0*deg;
e[1]=20.0*deg;
e[2]=30.0*deg;
// compute coresponding rotation matrix
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotated(e[0]*rad,1.0,0.0,0.0);
glRotated(e[1]*rad,0.0,1.0,0.0);
glRotated(e[2]*rad,0.0,0.0,1.0);
glGetDoublev(GL_MODELVIEW_MATRIX,m);
// cross match e,m -> euler_cfg
matrix2euler_init(e,m,euler_cfg);

// now we can use
matrix2euler(e,m,euler_cfg);

这适用于任何转换顺序和/或约定/布局。init 只调用一次,然后您可以将转换用于任何变换矩阵...您还可以根据euler_cfg环境结果编写自己的优化版本