我对此感到好奇并做了一些测试。
我在钻石数据集上训练了一个模型,并观察到变量“x”对于预测钻石价格是否高于某个阈值是最重要的。然后,我添加了多个与 x 高度相关的列,运行相同的模型,并观察到相同的值。
看来,当两列的相关性为1时,xgboost在计算模型之前去掉了多余的列,所以重要性不受影响。但是,当您添加与另一列部分相关的列时,因此系数较低,原始变量 x 的重要性会降低。
例如,如果我添加一个变量 xy = x + y,x 和 y 的重要性都会降低。同样,如果我添加 r=0.4、0.5 或 0.6 的新变量,x 的重要性会降低,尽管只是一点点。
我认为当你计算模型的准确性时,共线性不是提升的问题,因为决策树并不关心使用了哪个变量。然而,它可能会影响变量的重要性,因为删除两个相关变量中的一个不会对模型的准确性产生很大影响,因为另一个包含相似的信息。
library(tidyverse)
library(xgboost)
evaluate_model = function(dataset) {
print("Correlation matrix")
dataset %>% select(-cut, -color, -clarity, -price) %>% cor %>% print
print("running model")
diamond.model = xgboost(
data=dataset %>% select(-cut, -color, -clarity, -price) %>% as.matrix,
label=dataset$price > 400,
max.depth=15, nrounds=30, nthread=2, objective = "binary:logistic",
verbose=F
)
print("Importance matrix")
importance_matrix <- xgb.importance(model = diamond.model)
importance_matrix %>% print
xgb.plot.importance(importance_matrix)
}
> diamonds %>% head
carat cut color clarity depth table price x y z
0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
根据钻石数据评估模型
给定所有可用的数字变量(克拉、深度、表格、x、y、x),我们预测价格是否高于 400
请注意,x 是最重要的变量,重要性增益得分为 0.375954。
evaluate_model(diamonds)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.37595419 0.54788335 0.19607102
2: carat 0.19699839 0.18015576 0.04873442
3: depth 0.15358261 0.08780079 0.27767284
4: y 0.11645929 0.06527969 0.18813751
5: table 0.09447853 0.05037063 0.17151492
6: z 0.06252699 0.06850978 0.11786929
在 Diamonds 上训练的模型,将 r=1 的变量添加到 x
在这里,我们添加了一个新列,但是它没有添加任何新信息,因为它与 x 完全相关。
请注意,输出中不存在此新变量。似乎 xgboost 在开始计算之前会自动删除完全相关的变量。x 的重要性增益相同,为 0.3759。
diamonds_xx = diamonds %>%
mutate(xx = x + runif(1, -1, 1))
evaluate_model(diamonds_xx)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
xx 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
xx
carat 0.97509423
depth -0.02528925
table 0.19534428
x 1.00000000
y 0.97470148
z 0.97077180
xx 1.00000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.37595419 0.54788335 0.19607102
2: carat 0.19699839 0.18015576 0.04873442
3: depth 0.15358261 0.08780079 0.27767284
4: y 0.11645929 0.06527969 0.18813751
5: table 0.09447853 0.05037063 0.17151492
6: z 0.06252699 0.06850978 0.11786929
在 Diamonds 上训练的模型,为 x + y 添加一列
我们添加一个新列 xy = x + y。这与 x 和 y 部分相关。
请注意,x 和 y 的重要性略有降低,x 的重要性从 0.3759 降低到 0.3592,y 的重要性从 0.116 降低到 0.079。
diamonds_xy = diamonds %>%
mutate(xy=x+y)
evaluate_model(diamonds_xy)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
xy 0.96945349 -0.02750770 0.1907100 0.99354016 0.99376929 0.96744200
xy
carat 0.9694535
depth -0.0275077
table 0.1907100
x 0.9935402
y 0.9937693
z 0.9674420
xy 1.0000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.35927767 0.52924339 0.15952849
2: carat 0.17881931 0.18472506 0.04793713
3: depth 0.14353540 0.07482622 0.24990177
4: table 0.09202059 0.04714548 0.16267191
5: xy 0.08203819 0.04706267 0.13555992
6: y 0.07956856 0.05284980 0.13595285
7: z 0.06474029 0.06414738 0.10844794
在 Diamonds 数据上训练的模型,修改后添加了冗余列
我们添加三个与 x 相关的新列(r = 0.4、0.5 和 0.6),看看会发生什么。
请注意,x 的重要性降低了,从 0.3759 下降到 0.279。
#' given a vector of values (e.g. diamonds$x), calculate three new vectors correlated to it
#'
#' Source: https://stat.ethz.ch/pipermail/r-help/2007-April/128938.html
calculate_correlated_vars = function(x1) {
# create the initial x variable
#x1 <- diamonds$x
# x2, x3, and x4 in a matrix, these will be modified to meet the criteria
x234 <- scale(matrix( rnorm(nrow(diamonds) * 3), ncol=3 ))
# put all into 1 matrix for simplicity
x1234 <- cbind(scale(x1),x234)
# find the current correlation matrix
c1 <- var(x1234)
# cholesky decomposition to get independence
chol1 <- solve(chol(c1))
newx <- x1234 %*% chol1
# check that we have independence and x1 unchanged
zapsmall(cor(newx))
all.equal( x1234[,1], newx[,1] )
# create new correlation structure (zeros can be replaced with other r vals)
newc <- matrix(
c(1 , 0.4, 0.5, 0.6,
0.4, 1 , 0 , 0 ,
0.5, 0 , 1 , 0 ,
0.6, 0 , 0 , 1 ), ncol=4 )
# check that it is positive definite
eigen(newc)
chol2 <- chol(newc)
finalx <- newx %*% chol2 * sd(x1) + mean(x1)
# verify success
mean(x1)
colMeans(finalx)
sd(x1)
apply(finalx, 2, sd)
zapsmall(cor(finalx))
#pairs(finalx)
all.equal(x1, finalx[,1])
finalx
}
finalx = calculate_correlated_vars(diamonds$x)
diamonds_cor = diamonds
diamonds_cor$x5 = finalx[,2]
diamonds_cor$x6 = finalx[,3]
diamonds_cor$x7 = finalx[,4]
evaluate_model(diamonds_cor)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.028224314 0.18161755 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.000000000 -0.29577852 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.295778522 1.00000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.025289247 0.19534428 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.029340671 0.18376015 0.97470148 1.00000000 0.95200572
z 0.95338738 0.094923882 0.15092869 0.97077180 0.95200572 1.00000000
x5 0.39031255 -0.007507604 0.07338484 0.40000000 0.38959178 0.38734145
x6 0.48879000 -0.016481580 0.09931705 0.50000000 0.48835896 0.48487442
x7 0.58412252 -0.013772440 0.11822089 0.60000000 0.58408881 0.58297414
x5 x6 x7
carat 3.903125e-01 4.887900e-01 5.841225e-01
depth -7.507604e-03 -1.648158e-02 -1.377244e-02
table 7.338484e-02 9.931705e-02 1.182209e-01
x 4.000000e-01 5.000000e-01 6.000000e-01
y 3.895918e-01 4.883590e-01 5.840888e-01
z 3.873415e-01 4.848744e-01 5.829741e-01
x5 1.000000e+00 5.925447e-17 8.529781e-17
x6 5.925447e-17 1.000000e+00 6.683397e-17
x7 8.529781e-17 6.683397e-17 1.000000e+00
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.27947762 0.51343709 0.09748172
2: carat 0.13556427 0.17401365 0.02680747
3: x5 0.13369515 0.05267688 0.18155971
4: x6 0.12968400 0.04804315 0.19821284
5: x7 0.10600238 0.05148826 0.16450041
6: depth 0.07087679 0.04485760 0.11251015
7: y 0.06050565 0.03896716 0.08245329
8: table 0.04577057 0.03135677 0.07554833
9: z 0.03842355 0.04515944 0.06092608