我目前正在尝试在一个大型 csv 文件(>70GB,超过 6000 万行)上训练模型。为此,我使用 tf.contrib.learn.read_batch_examples。我正在努力理解这个函数是如何实际读取数据的。如果我使用例如 50.000 的批量大小,它会读取文件的前 50.000 行吗?如果我想遍历整个文件(1 epoch),我必须使用 num_rows/batch_size = 1.200 步数来进行 estimator.fit 方法吗?
这是我当前使用的输入函数:
def input_fn(file_names, batch_size):
# Read csv files and create examples dict
examples_dict = read_csv_examples(file_names, batch_size)
# Continuous features
feature_cols = {k: tf.string_to_number(examples_dict[k],
out_type=tf.float32) for k in CONTINUOUS_COLUMNS}
# Categorical features
feature_cols.update({
k: tf.SparseTensor(
indices=[[i, 0] for i in range(examples_dict[k].get_shape()[0])],
values=examples_dict[k],
shape=[int(examples_dict[k].get_shape()[0]), 1])
for k in CATEGORICAL_COLUMNS})
label = tf.string_to_number(examples_dict[LABEL_COLUMN], out_type=tf.int32)
return feature_cols, label
def read_csv_examples(file_names, batch_size):
def parse_fn(record):
record_defaults = [tf.constant([''], dtype=tf.string)] * len(COLUMNS)
return tf.decode_csv(record, record_defaults)
examples_op = tf.contrib.learn.read_batch_examples(
file_names,
batch_size=batch_size,
queue_capacity=batch_size*2.5,
reader=tf.TextLineReader,
parse_fn=parse_fn,
#read_batch_size= batch_size,
#randomize_input=True,
num_threads=8
)
# Important: convert examples to dict for ease of use in `input_fn`
# Map each header to its respective column (COLUMNS order
# matters!
examples_dict_op = {}
for i, header in enumerate(COLUMNS):
examples_dict_op[header] = examples_op[:, i]
return examples_dict_op
这是我用来训练模型的代码:
def train_and_eval():
"""Train and evaluate the model."""
m = build_estimator(model_dir)
m.fit(input_fn=lambda: input_fn(train_file_name, batch_size), steps=steps)
如果我用相同的 input_fn 再次调用 fit 函数会发生什么。它会再次从文件的开头开始,还是会记住上次停止的行?