我正在使用 Tensorflow 来预测给定的句子是正面的还是负面的。我已经采集了 5000 个正句样本和 5000 个负句样本。我将 90% 的数据用于训练神经网络,其余 10% 用于测试。
下面是参数初始化。批量大小 = 100 时期 = 30 隐藏层数 = 每个隐藏层中的 3 个节点 = 100 时期 = 30
我可以看到每个时期的成本函数都在合理地减少。但是模型在测试集上的准确率很差(只有 56%)
Epoch 1 completed out of 30 loss : 22611.10902404785
Epoch 2 completed out of 30 loss : 12377.467597961426
Epoch 3 completed out of 30 loss : 8659.753067016602
Epoch 4 completed out of 30 loss : 6678.618850708008
Epoch 5 completed out of 30 loss : 5391.995906829834
Epoch 6 completed out of 30 loss : 4476.406986236572
Epoch 7 completed out of 30 loss : 3776.497922897339
-------------------------------------------------------
Epoch 25 completed out of 30 loss : 478.93606185913086
Epoch 26 completed out of 30 loss : 450.8017848730087
Epoch 27 completed out of 30 loss : 435.0913710594177
Epoch 28 completed out of 30 loss : 452.10553523898125
Epoch 29 completed out of 30 loss : 539.5199084281921
Epoch 30 completed out of 30 loss : 685.9198244810104
Accuracy of Train : 0.88155556
Accuracy of Test : 0.524
考虑到相同数量的数据集,是否可以调整任何参数以提高模型的准确性。

