我正在寻找使用 Matplotlib 绘制网格的最有效方法,给出以下信息、每个节点的坐标、哪些节点属于每个元素以及每个节点具有的值。下面我有一些示例数据和图像,显示了网格的样子
nodeinfo=[[0.000,0.000],[1.000,0.000],[2.000,0.500],[0.000,1.000],
[1.000,1.000],[1.750,1.300],[1.000,1.700]]
elementInfo=[[1,2,5],[5,4,1],[2,3,6],[6,5,2],[4,5,7],[5,6,7]]
nodevalues=[1,2,1,2,7,4,5]
nodeinfo 是每个节点的坐标(例如节点 7 有坐标 (1,1.7)),elementInfo 给出每个元素由哪些节点组成(例如元素 3 有节点 2,3,6),nodevalues 给出每个节点的值(例如节点 5 的值为 7)。
使用此信息,我如何使用 matplotlib 绘制网格,其颜色渐变显示节点的不同值(如果可能,如果节点之间存在颜色渐变,因为每个元素都是线性的,那就太好了)。
注意 如果您想使用它,请创建一些将信息组织到节点对象中的代码。
class node:
# Initializer / Instance Attributes
def __init__(self, number, xCord, yCord):
self.number=number
self.value=1
self.isOnBoundary=False
self.xCord=xCord
self.yCord=yCord
self.boundaryType=None
self.element=[]
#makes all class variables callable
def __call__(self):
return self
def checkIfOnBoundary(self,boundarylist):
# Checks if the node is on the boundary when it is invoked
# If the node is not on the boundary then it is set to false
if self.number in boundarylist:
self.isOnBoundary=True
self.boundaryType=boundarylist[self.number][0]
if self.boundaryType == "Dirchlet":
self.value=boundarylist[self.number][1]
else:
self.isOnBoundary=False
def setElement(self,elementInfo):
#given a list in the form [element1,element2,...,elementn]
#where element1 is a list that contains all the nodes that are on that element
for element in elementInfo:
if self.number in element:
self.element.append(elementInfo.index(element)+1)
def setValue(self,value):
# changes the value of the node
self.value=value
def description(self):
return "Node Number: {}, Node Value: {}, Element Node Belongs to: {}, Is Node On the Boundary: {}".format(self.number, self.value, self.element, self.isOnBoundary)
nodeinfo=[[0.000,0.000],[1.000,0.000],[2.000,0.500],[0.000,1.000],
[1.000,1.000],[1.750,1.300],[1.000,1.700]]
elementInfo=[[1,2,5],[5,4,1],[2,3,6],[6,5,2],[4,5,7],[5,6,7]]
nodevalues=[1,2,1,2,7,4,5]
#create list of node objects which we will call on often
nodes=[]
for i in range(len(nodeinfo)):
print(i)
nodes.append(node(i+1,nodeinfo[i][0],nodeinfo[i][1]))
nodes[i].setElement(elementInfo)
#print information related to each object
for phi in nodes:
print(vars(phi))