我想将 lmer(真的是 glmer)的输出与玩具二项式示例相匹配。我已经阅读了这些小插曲,并相信我了解发生了什么。
但显然我没有。卡住之后,我根据随机效应确定了“真相”,并单独估计了固定效应。我在下面包含此代码。要查看它是否合法,您可以注释掉+ Z %*% b.k
它,它将与常规 glm 的结果相匹配。我希望借用一些脑力来弄清楚为什么在包含随机效应时我无法匹配 lmer 的输出。
# Setup - hard coding simple data set
df <- data.frame(x1 = rep(c(1:5), 3), subject = sort(rep(c(1:3), 5)))
df$subject <- factor(df$subject)
# True coefficient values
beta <- matrix(c(-3.3, 1), ncol = 1) # Intercept and slope, respectively
u <- matrix(c(-.5, .6, .9), ncol = 1) # random effects for the 3 subjects
# Design matrices Z (random effects) and X (fixed effects)
Z <- model.matrix(~ 0 + factor(subject), data = df)
X <- model.matrix(~ 1 + x1, data = df)
# Response
df$y <- c(1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1)
y <- df$y
### Goal: match estimates from the following lmer output!
library(lme4)
my.lmer <- lmer( y ~ x1 + (1 | subject), data = df, family = binomial)
summary(my.lmer)
ranef(my.lmer)
### Matching effort STARTS HERE
beta.k <- matrix(c(-3, 1.5), ncol = 1) # Initial values (close to truth)
b.k <- matrix(c(1.82478, -1.53618, -.5139356), ncol = 1) # lmer's random effects
# Iterative Gauss-Newton algorithm
for (iter in 1:6) {
lin.pred <- as.numeric(X %*% beta.k + Z %*% b.k)
mu.k <- plogis(lin.pred)
variances <- mu.k * (1 - mu.k)
W.k <- diag(1/variances)
y.star <- W.k^(.5) %*% (y - mu.k)
X.star <- W.k^(.5) %*% (variances * X)
delta.k <- solve(t(X.star) %*% X.star) %*% t(X.star) %*% y.star
# Gauss-Newton Update
beta.k <- beta.k + delta.k
cat(iter, "Fixed Effects: ", beta.k, "\n")
}