我有 100 个连续的一维点的样本。我使用核方法估计了它的非参数密度。如何从这个估计分布中抽取随机样本?
如何从非参数估计分布中抽取随机样本?
机器算法验证
r
采样
内核平滑
2022-01-20 02:46:52
1个回答
核密度估计是混合分布;对于每一次观察,都有一个内核。如果内核是一个缩放密度,这会导致一个简单的算法从内核密度估计中采样:
repeat nsim times:
sample (with replacement) a random observation from the data
sample from the kernel, and add the previously sampled random observation
如果(例如)您使用高斯核,则您的密度估计是 100 个法线的混合,每个法线都以您的一个样本点为中心,并且所有的标准偏差等于估计的带宽。要绘制样本,您只需替换一个样本点(例如)进行采样,然后从中采样。在 R 中:
# Original distribution is exp(rate = 5)
N = 1000
x <- rexp(N, rate = 5)
hist(x, prob = TRUE)
lines(density(x))
# Store the bandwith of the estimated KDE
bw <- density(x)$bw
# Draw from the sample and then from the kernel
means <- sample(x, N, replace = TRUE)
hist(rnorm(N, mean = means, sd = bw), prob = TRUE)
严格来说,鉴于混合物的成分权重相同,您可以避免使用替换零件进行抽样,而只需从混合物的每个成分中
M = 10
hist(rnorm(N * M, mean = x, sd = bw))
如果由于某种原因您无法从内核中提取(例如,您的内核不是密度),您可以尝试使用重要性采样或MCMC。例如,使用重要性抽样:
# Draw from proposal distribution which is normal(mu, sd = 1)
sam <- rnorm(N, mean(x), 1)
# Weight the sample using ratio of target and proposal densities
w <- sapply(sam, function(input) sum(dnorm(input, mean = x, sd = bw)) /
dnorm(input, mean(x), 1))
# Resample according to the weights to obtain an un-weighted sample
finalSample <- sample(sam, N, replace = TRUE, prob = w)
hist(finalSample, prob = TRUE)
PS感谢为答案做出贡献的Glen_b。
其它你可能感兴趣的问题