我有以下模型m_plot
,其中包含参与者 ( ) 和项目 ( )lme4::lmer
的交叉随机效应:lfdn
content
Random effects:
Groups Name Variance Std.Dev. Corr
lfdn (Intercept) 172.173 13.121
role1 62.351 7.896 0.03
inference1 24.640 4.964 0.08 -0.30
inference2 52.366 7.236 -0.05 0.17 -0.83
inference3 21.295 4.615 -0.03 0.22 0.86 -0.77
content (Intercept) 23.872 4.886
role1 2.497 1.580 -1.00
inference1 18.929 4.351 0.52 -0.52
inference2 14.716 3.836 -0.16 0.16 -0.08
inference3 17.782 4.217 -0.17 0.17 0.25 -0.79
role1:inference1 9.041 3.007 0.10 -0.10 -0.10 -0.21 0.16
role1:inference2 5.968 2.443 -0.60 0.60 -0.11 0.78 -0.48 -0.50
role1:inference3 4.420 2.102 0.30 -0.30 0.05 -0.97 0.71 0.37 -0.90
Residual 553.987 23.537
Number of obs: 3480, groups: lfdn, 435 content, 20
我想知道参与者和项目的类内相关系数 (ICC)。多亏了这个很好的答案,我原则上知道如何为我的模型获取 ICC。但是,我不确定是否包括随机斜率:
vars <- lapply(summary(m_plot)$varcor, diag)
resid_var <- attr(summary(m_plot)$varcor, "sc")^2
total_var <- sum(sapply(vars, sum), resid_var)
# with random slopes
sapply(vars, sum)/total_var
## lfdn content
## 0.33822396 0.09880349
# only random intercepts:
sapply(vars, function(x) x[1]) / total_var
## lfdn.(Intercept) content.(Intercept)
## 0.17496587 0.02425948
什么是衡量同一参与者对同一项目的两个响应之间相关性的适当度量?