答案取自实施块正交匹配追踪 (BOMP) 算法。
块正交匹配追踪 (BOMP) 算法基本上是具有单一主要区别的正交匹配追踪 (OMP) 算法 - 我们没有选择最大化相关性的单一索引,而是选择了一组索引、矩阵的列子集和解决方案向量。
该算法的一个很好的参考在:
- 块正交匹配追踪算法的一个最优条件。
- 块稀疏性:一致性和高效恢复。
代码由以下给出:
function [ vX ] = SolveLsL0Bomp( mA, vB, numBlocks, paramK, tolVal )
% ----------------------------------------------------------------------------------------------- %
%[ vX ] = SolveLsL0Omp( mA, vB, paramK, tolVal )
% Minimizes Least Squares of Linear System with L0 Constraint Using
% Block Orthogonal Matching Pursuit (OMP) Method.
% \arg \min_{x} {\left\| A x - b \right\|}_{2}^{2} subject to {\left\| x
% \right\|}_{2, 0} \leq K
% Input:
% - mA - Input Matirx.
% The model matrix (Fat Matrix). Assumed to be
% normlaized. Namely norm(mA(:, ii)) = 1 for any
% ii.
% Structure: Matrix (m X n).
% Type: 'Single' / 'Double'.
% Range: (-inf, inf).
% - vB - input Vector.
% The model known data.
% Structure: Vector (m X 1).
% Type: 'Single' / 'Double'.
% Range: (-inf, inf).
% - numBlocks - Number of Blocks.
% The number of blocks in the problem structure.
% Structure: Scalar.
% Type: 'Single' / 'Double'.
% Range: {1, 2, ...}.
% - paramK - Parameter K.
% The L0 constraint parameter. Basically the
% maximal number of active blocks in the
% solution.
% Structure: Scalar.
% Type: 'Single' / 'Double'.
% Range: {1, 2, ...}.
% - tolVal - Tolerance Value.
% Tolerance value for equality of the Linear
% System.
% Structure: Scalar.
% Type: 'Single' / 'Double'.
% Range [0, inf).
% Output:
% - vX - Output Vector.
% Structure: Vector (n X 1).
% Type: 'Single' / 'Double'.
% Range: (-inf, inf).
% References
% 1. An Optimal Condition for the Block Orthogonal Matching Pursuit
% Algorithm - https://ieeexplore.ieee.org/document/8404118.
% 2. Block Sparsity: Coherence and Efficient Recovery - https://ieeexplore.ieee.org/document/4960226.
% Remarks:
% 1. The algorithm assumes 'mA' is normalized (Each column).
% 2. The number of columns in matrix 'mA' must be an integer
% multiplication of the number of blocks.
% 3. For 'numBlocks = numColumns' (Equivalent of 'numElmBlock = 1') the
% algorithm becomes the classic OMP.
% Known Issues:
% 1. A
% TODO:
% 1. Pre Process 'mA' by normalizing its columns.
% Release Notes:
% - 1.0.000 19/08/2019
% * First realease version.
% ----------------------------------------------------------------------------------------------- %
numRows = size(mA, 1);
numCols = size(mA, 2);
numElmBlock = numCols / numBlocks;
if(round(numElmBlock) ~= numElmBlock)
error('Number of Blocks Doesn''t Match Size of Arrays');
end
vActiveIdx = false([numCols, 1]);
vR = vB;
vX = zeros([numCols, 1]);
activeBlckIdx = [];
for ii = 1:paramK
maxCorr = 0;
for jj = 1:numBlocks
vBlockIdx = (((jj - 1) * numElmBlock) + 1):(jj * numElmBlock);
currCorr = abs(mA(:, vBlockIdx).' * vR);
if(currCorr > maxCorr)
activeBlckIdx = jj;
maxCorr = currCorr;
end
end
vBlockIdx = (((activeBlckIdx - 1) * numElmBlock) + 1):(activeBlckIdx * numElmBlock);
vActiveIdx(vBlockIdx) = true();
vX(vActiveIdx) = mA(:, vActiveIdx) \ vB;
vR = vB - (mA(:, vActiveIdx) * vX(vActiveIdx));
resNorm = norm(vR);
if(resNorm < tolVal)
break;
end
end
end