确定不连续函数的周期

信息处理 傅里叶变换 频率
2022-02-05 21:56:52

我是DSP领域的新手。

我正在尝试确定函数的周期和班次。我尝试过使用 FFT,但运气不佳。看起来应该很简单。

信号(八度矩阵的 pastebin):

# Created by Octave 3.2.4, Wed Dec 12 00:26:41 2012 PST <jjohnson@jjohnson>
# name: a
# type: matrix
# rows: 1
# columns: 495
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.529411764705882 0.945098039215686 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.415686274509804 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.556862745098039 0.890196078431372 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.72156862745098 0.749019607843137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.862745098039216 0.611764705882353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.933333333333333 0.470588235294118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

用 绘制的信号plot(a)

在此处输入图像描述

用手我可以看出班次是 75,周期是 ~56。我如何从 FFT 的结果中得到它?!还有其他更合适的算法吗?

用 绘制的 FFT plot(abs(fft(a)))

在此处输入图像描述

3个回答

这将为您提供滞后 100 个样本的自协方差图:

plot(autocov(a,100))

自协方差

在那里你可以清楚地得到你的信号周期。

另一种方法是显式获取每个脉冲的时间:

pulses = a > 0.1;
leading_edges = diff(pulses) > 0;
times = find(leading_edges > 0);
periods = diff(times)

ans =
    55   56   56   56   56

解释:pulses有脉搏的地方为 1。leading_edges仅在脉冲的第一个样本上获得 1。times给出每个前沿的样本数.

使用此结果,您可以执行自己的统计或估计。第二种方法在计算上比使用变换更有效。计算时间与样本数量成线性关系。

如果在 FFT 之前去除 DC 偏移,FFT 结果将更清楚地显示低频峰值。

我的回答是基于这个答案https://dsp.stackexchange.com/a/15117/3573 by https://dsp.stackexchange.com/users/80/peter-k

以下是八度代码:

y=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.529411764705882 0.945098039215686 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.415686274509804 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.556862745098039 0.890196078431372 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.72156862745098 0.749019607843137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.862745098039216 0.611764705882353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.933333333333333 0.470588235294118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
plot(y);
title("Signal")
print -dpng signal.png

autocorrelation=xcorr(y);
figure
plot(autocorrelation)

[pks loc] = findpeaks(autocorrelation,'DoubleSided');
hold on
plot(loc,pks,'or')
title("Autocorrelation")
print -dpng autocor.png

distance_between_peaks = diff(loc);
printf("Mean distance between peaks: %d\n",mean(diff(loc)))

下图是您的信号图y

在此处输入图像描述

下图是xcorr(y)您的信号的自相关图,峰值标记为红色:

在此处输入图像描述

然后我们取峰值位置之间的距离(用diff)并计算平均距离,脚本给出以下输出:

Mean distance between peaks: 55.6667