众所周知,加性高斯白噪声 (AWGN) 的 PSD 是恒定的并且等于其方差。那么有色高斯噪声(CGN)呢?
例如,给定以下 CGN 的 PSD
这种噪声的频谱密度与频率有关吗?如果是这样,如何通过一些“逆”自相关函数获得 PDF?
众所周知,加性高斯白噪声 (AWGN) 的 PSD 是恒定的并且等于其方差。那么有色高斯噪声(CGN)呢?
例如,给定以下 CGN 的 PSD
这种噪声的频谱密度与频率有关吗?如果是这样,如何通过一些“逆”自相关函数获得 PDF?
根据定义,彩色高斯噪声是广义平稳(WSS) 过程;即具有恒定均值(构成过程的所有随机变量均值相同),其自相关函数仅取决于差的论点。通常使用来表示差异,并通过编写而不是更冗长的来滥用符号来表示自相关函数. 该过程的功率谱密度 (PSD) 就是的傅里叶变换:
White noise is a zero-mean process for which where is the Dirac delta or impulse and its PSD has constant value for . Colored noise is a zero-mean process whose PSD is not constant for all . Colored Gaussian noise is a process in which all the random variables are zero-mean correlated (jointly) Gaussian random variables with random variables separated by time having covariance . Note that the variance of all the random variables is . The PSD has the connection to the PDF that the PSD determines the variance of the random variables in question via the following corollary to the inverse Fourier transform formula:
Assuming
See
https://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem
The PDF is Gaussian, what other PDF are you asking about?
For example, consider a discrete-time integrator
where is the (zero-variance) initial condition and is the AWGN input.
Hence,
Since the addition of independent Gaussian random variables is still Gaussian, we conclude that
Linear systems preserve "Gaussian-ness". Sometimes, one can do without the frequency domain.