根据我之前的问题:Removing cracking in real time audio,我正在尝试在实时音频中实现动态过滤器。
我想要做的是创建一个过滤器,我可以在运行时更改截止频率。到目前为止,我已经实现了一个简单的代码,它在每次迭代时将截止频率增加 10Hz。代码如下并且工作正常:
import pyaudio
import wave
import time
import numpy as np
import scipy.io.wavfile as sw
import librosa
import scipy.signal
import scipy
import sys
from scipy.io.wavfile import write
############ Global variables ###################
filename = '../wav/The_Weeknd.wav' #Test file
chunk = 512 #frame size
#Conversion from np to pyAudio types
np_to_pa_format = {
np.dtype('float32') : pyaudio.paFloat32,
np.dtype('int32') : pyaudio.paInt32,
np.dtype('int16') : pyaudio.paInt16,
np.dtype('int8') : pyaudio.paInt8,
np.dtype('uint8') : pyaudio.paUInt8
}
np_type_to_sample_width = {
np.dtype('float32') : 4,
np.dtype('int32') : 4,
np.dtype('int16') : 3,
np.dtype('int8') : 1,
np.dtype('uint8') : 1
}
STEREO = 2 #channels
#################################################
# Simple class which reads an input test wav file and reproduce it in a real time fashion. Used to test real time functioning.
class Player:
# Loading the input test file. Crop to 30 seconds length
def __init__(self):
self.input_array, self.sample_rate = librosa.load(filename, sr=44100, dtype=np.float32, offset=30, duration=60)
#print(self.sample_rate)
#print(self.input_array.shape)
self.cycle_count = 0
self.highcut = 300
self.filter_state = np.zeros(4)
def bandPassFilter(self,signal, highcut):
fs = 44100
lowcut = 20
highcut = highcut
nyq= 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
order = 2
b, a = scipy.signal.butter(order, [low,high], 'bandpass', analog=False)
y, self.filter_state = scipy.signal.lfilter(b,a,signal, axis=0, zi=self.filter_state) # NB: filtfilt needs forward and backward information to filter. So it can't be used in realtime filtering where i have no info about future samples! lfilter is better for real time applications!
return(y)
def pyaudio_callback(self,in_data, frame_count, time_info, status):
audio_size = np.shape(self.input_array)[0]
#print(audio_size)
#print('frame count: ', frame_count)
if frame_count*self.cycle_count > audio_size:
# Processing is complete.
#print('processing complete')
return (None, pyaudio.paComplete)
elif frame_count*(self.cycle_count+1) > audio_size:
# Last frame to process.
#print('1 left frame')
frames_left = audio_size - frame_count*self.cycle_count
else:
# Every other frame.
#print('everyotherframe')
frames_left = frame_count
data = self.input_array[frame_count*self.cycle_count:frame_count*self.cycle_count+frames_left]
data = self.bandPassFilter(data, self.highcut)
if(self.highcut<20000):
self.highcut += 10
#print('len of data', data.shape)
#write('test.wav', 44100, data) #Saves correctly the file!
out_data = data.astype(np.float32).tobytes()
#print('printing length: ',len(out_data))
#print(out_data)
self.cycle_count+=1
#print(self.cycle_count)
#print('pyaudio continue value: ',pyaudio.paContinue)
return (out_data, pyaudio.paContinue)
def start_non_blocking_processing(self, save_output=True, frame_count=2**10, listen_output=True):
'''
Non blocking mode works on a different thread, therefore, the main thread must be kept active with, for example:
while processing():
time.sleep(1)
'''
self.save_output = save_output
self.frame_count = frame_count
# Initiate PyAudio
self.pa = pyaudio.PyAudio()
# Open stream using callback
self.stream = self.pa.open(format=np_to_pa_format[self.input_array.dtype],
channels=1,
rate=self.sample_rate,
output=listen_output,
input=not listen_output,
stream_callback=self.pyaudio_callback,
frames_per_buffer=frame_count)
# Start the stream
self.stream.start_stream()
def processing(self):
'''
Returns true if the PyAudio stream is still active in non blocking mode.
MUST be called AFTER self.start_non_blocking_processing.
'''
return self.stream.is_active()
def terminate_processing(self):
'''
Terminates stream opened by self.start_non_blocking_processing.
MUST be called AFTER self.processing returns False.
'''
# Stop stream.
self.stream.stop_stream()
self.stream.close()
# Close PyAudio.
self.pa.terminate()
# Resets count.
self.cycle_count = 0
# Resets output.
self.output_array = np.array([[], []], dtype=self.input_array.dtype).T
if __name__ == "__main__":
print('RUNNING MAIN')
player = Player()
player.start_non_blocking_processing()
while(player.processing()):
time.sleep(0.1)
player.terminate_processing()
正如另一位用户在我之前的回答中建议我的那样,在每次迭代时在回调函数中重新创建过滤器并不是一个好主意,这可能会导致问题和无用的额外计算。
除了使用新的截止频率重新创建整个滤波器之外,我一直试图找到一个更好的解决方案,但我找不到更好的解决方案。
有没有办法(例如使用 scipy)在运行时更改截止频率而不重新创建整个过滤器?